Development of DNA Vaccine Targeting E6 and E7 Proteins of Human Papillomavirus 16 (HPV16) and HPV18 for Immunotherapy in Combination with Recombinant Vaccinia Boost and PD-1 Antibody.

Journal Article (Journal Article)

Immunotherapy for cervical cancer should target high-risk human papillomavirus types 16 and 18, which cause 50% and 20% of cervical cancers, respectively. Here, we describe the construction and characterization of the pBI-11 DNA vaccine via the addition of codon-optimized human papillomavirus 18 (HPV18) E7 and HPV16 and 18 E6 genes to the HPV16 E7-targeted DNA vaccine pNGVL4a-SigE7(detox)HSP70 (DNA vaccine pBI-1). Codon optimization of the HPV16/18 E6/E7 genes in pBI-11 improved fusion protein expression compared to that in DNA vaccine pBI-10.1 that utilized the native viral sequences fused 3' to a signal sequence and 5' to the HSP70 gene of Mycobacterium tuberculosis Intramuscular vaccination of mice with pBI-11 DNA better induced HPV antigen-specific CD8+ T cell immune responses than pBI-10.1 DNA. Furthermore, intramuscular vaccination with pBI-11 DNA generated stronger therapeutic responses for C57BL/6 mice bearing HPV16 E6/E7-expressing TC-1 tumors. The HPV16/18 antigen-specific T cell-mediated immune responses generated by pBI-11 DNA vaccination were further enhanced by boosting with tissue-antigen HPV vaccine (TA-HPV). Combination of the pBI-11 DNA and TA-HPV boost vaccination with PD-1 antibody blockade significantly improved the control of TC-1 tumors and extended the survival of the mice. Finally, repeat vaccination with clinical-grade pBI-11 with or without clinical-grade TA-HPV was well tolerated in vaccinated mice. These preclinical studies suggest that the pBI-11 DNA vaccine may be used with TA-HPV in a heterologous prime-boost strategy to enhance HPV 16/18 E6/E7-specific CD8+ T cell responses, either alone or in combination with immune checkpoint blockade, to control HPV16/18-associated tumors. Our data serve as an important foundation for future clinical translation.IMPORTANCE Persistent expression of high-risk human papillomavirus (HPV) E6 and E7 is an obligate driver for several human malignancies, including cervical cancer, wherein HPV16 and HPV18 are the most common types. PD-1 antibody immunotherapy helps a subset of cervical cancer patients, and its efficacy might be improved by combination with active vaccination against E6 and/or E7. For patients with HPV16+ cervical intraepithelial neoplasia grade 2/3 (CIN2/3), the precursor of cervical cancer, intramuscular vaccination with a DNA vaccine targeting HPV16 E7 and then a recombinant vaccinia virus expressing HPV16/18 E6-E7 fusion proteins (TA-HPV) was safe, and half of the patients cleared their lesions in a small study (NCT00788164). Here, we sought to improve upon this therapeutic approach by developing a new DNA vaccine that targets E6 and E7 of HPV16 and HPV18 for administration prior to a TA-HPV booster vaccination and for application against cervical cancer in combination with a PD-1-blocking antibody.

Full Text

Duke Authors

Cited Authors

  • Peng, S; Ferrall, L; Gaillard, S; Wang, C; Chi, W-Y; Huang, C-H; Roden, RBS; Wu, T-C; Chang, Y-N; Hung, C-F

Published Date

  • January 19, 2021

Published In

Volume / Issue

  • 12 / 1

PubMed ID

  • 33468698

Pubmed Central ID

  • 33468698

Electronic International Standard Serial Number (EISSN)

  • 2150-7511

Digital Object Identifier (DOI)

  • 10.1128/mBio.03224-20

Language

  • eng

Conference Location

  • United States