Solution of disordered microphases in the Bethe approximation.

Journal Article (Journal Article)

The periodic microphases that self-assemble in systems with competing short-range attractive and long-range repulsive (SALR) interactions are structurally both rich and elegant. Significant theoretical and computational efforts have thus been dedicated to untangling their properties. By contrast, disordered microphases, which are structurally just as rich but nowhere near as elegant, have not been as carefully considered. Part of the difficulty is that simple mean-field descriptions make a homogeneity assumption that washes away all of their structural features. Here, we study disordered microphases by exactly solving a SALR model on the Bethe lattice. By sidestepping the homogenization assumption, this treatment recapitulates many of the key structural regimes of disordered microphases, including particle and void cluster fluids as well as gelation. This analysis also provides physical insight into the relationship between various structural and thermal observables, between criticality and physical percolation, and between glassiness and microphase ordering.

Full Text

Duke Authors

Cited Authors

  • Charbonneau, P; Tarzia, M

Published Date

  • July 2021

Published In

Volume / Issue

  • 155 / 2

Start / End Page

  • 024501 -

PubMed ID

  • 34266261

Electronic International Standard Serial Number (EISSN)

  • 1089-7690

International Standard Serial Number (ISSN)

  • 0021-9606

Digital Object Identifier (DOI)

  • 10.1063/5.0052111


  • eng