The genetic architecture and evolution of life-history divergence among perennials in the Mimulus guttatus species complex.

Journal Article (Journal Article)

Ecological divergence is a fundamental source of phenotypic diversity between closely related species, yet the genetic architecture of most ecologically relevant traits is poorly understood. Differences in elevation can impose substantial divergent selection on both complex, correlated suites of traits (such as life-history), as well as novel adaptations. We use the Mimulus guttatus species complex to assess if the divergence in elevation is accompanied by trait divergence in a group of closely related perennials and determine the genetic architecture of this divergence. We find that divergence in elevation is associated with differences in life-history, as well as a unique trait, the production of rhizomes. The divergence between two perennials is largely explained by few mid-to-large effect quantitative trait loci (QTLs). However, the presence of QTLs with correlated, but opposing effects on multiple traits leads to some hybrids with transgressive trait combinations. Lastly, we find that the genetic architecture of the ability to produce rhizomes changes through development, wherein most hybrids produce rhizomes, but only later in development. Our results suggest that elevational differences may shape life-history divergence between perennials, but aspects of the genetic architecture of divergence may have implications for hybrid fitness in nature.

Full Text

Duke Authors

Cited Authors

  • Coughlan, JM; Brown, MW; Willis, JH

Published Date

  • April 2021

Published In

Volume / Issue

  • 288 / 1948

Start / End Page

  • 20210077 -

PubMed ID

  • 33823671

Pubmed Central ID

  • PMC8059554

Electronic International Standard Serial Number (EISSN)

  • 1471-2954

International Standard Serial Number (ISSN)

  • 0962-8452

Digital Object Identifier (DOI)

  • 10.1098/rspb.2021.0077


  • eng