Excited-State Dynamics and Nonlinear Optical Properties of Hyperpolarizable Chromophores Based on Conjugated Bis(terpyridyl)Ru(II) and Palladium and Platinum Porphyrinic Components: Impact of Heavy Metals upon Supermolecular Electro-Optic Properties.

Journal Article (Journal Article)

A new series of strongly coupled oscillators based upon (porphinato)Pd, (porphinato)Pt, and bis(terpyridyl)ruthenium(II) building blocks is described. These RuPPd , RuPPt , RuPPdRu , and RuPPtRu chromophores feature bis(terpyridyl)Ru(II) moieties connected to the (porphinato)metal unit via an ethyne linker that bridges the 4'-terpyridyl and porphyrin macrocycle meso -carbon positions. Pump-probe transient optical data demonstrate sub-picosecond excited singlet-to-triplet-state relaxation. The relaxed lowest-energy triplet (T1 ) excited states of these chromophores feature absorption manifolds that span the 800-1200 nm spectral region, microsecond triplet-state lifetimes, and large absorptive extinction coefficients [ε(T1 → Tn ) > 4 × 104 M-1 cm-1 ]. Dynamic hyperpolarizability (βλ ) values were determined from hyper-Rayleigh light scattering (HRS) measurements carried out at several incident irradiation wavelengths over the 800-1500 nm spectral region. Relative to benchmark RuPZn and RuPZnRu chromophores which showed large βHRS values over the 1200-1600 nm range, RuPPd , RuPPt , RuPPdRu , and RuPPtRu displayed large βHRS values over the 850-1200 nm region. Generalized Thomas-Kuhn sum (TKS) rules and experimental hyperpolarizability values were utilized to determine excited state-to-excited state transition dipole terms from experimental electronic absorption data and thus assessed frequency-dependent βλ values, including two- and three-level contributions for both βzzz and βxzx tensor components to the RuPPd , RuPPt , RuPPdRu , and RuPPtRu hyperpolarizability spectra. These analyses qualitatively rationalize how the βzzz and βxzx tensor elements influence the observed irradiation wavelength-dependent hyperpolarizability magnitudes. The TKS analysis suggests that supermolecules related to RuPPd , RuPPt , RuPPdRu , and RuPPtRu will likely feature intricate dependences of experimentally determined βHRS values as a function of irradiation wavelength that derive from substantial singlet-triplet mixing, and complex interactions among multiple different β tensor components that modulate the long wavelength regime of the nonlinear optical response.

Full Text

Duke Authors

Cited Authors

  • Nayak, A; Park, J; De Mey, K; Hu, X; Beratan, DN; Clays, K; Therien, MJ

Published Date

  • October 2021

Published In

Volume / Issue

  • 60 / 20

Start / End Page

  • 15404 - 15412

PubMed ID

  • 34585577

Electronic International Standard Serial Number (EISSN)

  • 1520-510X

International Standard Serial Number (ISSN)

  • 0020-1669

Digital Object Identifier (DOI)

  • 10.1021/acs.inorgchem.1c02041


  • eng