Facile one-pot solvothermal preparation of Mo-doped Bi2WO6 biscuit-like microstructures for visible-light-driven photocatalytic water oxidation

Journal Article (Journal Article)

The adsorption behavior and the separation efficiency of photogenerated electron-hole pairs are two important elements in estimating the photocatalytic activity of a photocatalyst. In this work, we have developed a facile one-pot solvothermal method for the preparation of Mo-doped Bi2WO6 with uniform three-dimensional (3D) hierarchical porous biscuit-like microstructures (PBMs). Mo doping is found to have two important roles in the synthesis of Bi2WO6 particles, leading to porous microstructures and adjusting band gaps of the Bi2MoxW1-xO6 particles. The band structure of the as-prepared porous Bi2MoxW1-xO6 products is characterized by UV-vis diffuse reflectance spectroscopy and valence-band X-ray photoelectron spectroscopy. Density functional theory (DFT) calculations give further insights into the band structure of the Bi2MoxW1-xO6 products. In all the samples, Bi2Mo0.21W0.79O6 PBMs exhibit a very efficient catalytic performance in oxidizing water under visible light irradiation (λ > 420 nm), with an average O2 evolution rate of up to 147.2 μmol h-1 g-1 and an apparent quantum efficiency (QE) of 3.1% at 420 nm, representing a 2 times more enhancement compared with the non-doped Bi2WO6 sample. This study provides a simple method for designing metal-doped semiconductors with porous structures for different applications.

Full Text

Duke Authors

Cited Authors

  • Etogo, A; Liu, R; Ren, J; Qi, L; Zheng, C; Ning, J; Zhong, Y; Hu, Y

Published Date

  • January 1, 2016

Published In

Volume / Issue

  • 4 / 34

Start / End Page

  • 13242 - 13250

Electronic International Standard Serial Number (EISSN)

  • 2050-7496

International Standard Serial Number (ISSN)

  • 2050-7488

Digital Object Identifier (DOI)

  • 10.1039/c6ta04923k

Citation Source

  • Scopus