Lipid-independent activation of a muscle-specific PKCα splicing variant.

Journal Article (Journal Article)

Protein kinase C-α (PKCα) plays a major role in a diverse range of cellular processes. Studies to date have defined the regulatory controls and function of PKCα entirely based upon the previously annotated ubiquitously expressed prototypical isoform. From RNA-seq-based transcriptome analysis in murine heart, we identified a previously unannotated PKCα variant produced by alternative RNA splicing. This PKCα transcript variant, which we named PKCα-novel exon (PKCα-NE), contains an extra exon between exon 16 and exon 17, and is specifically detected in adult mouse cardiac and skeletal muscle, but not other tissues; it is also detected in human hearts. This transcript variant yields a PKCα isoform with additional 16 amino acids inserted in its COOH-terminal variable region. Although the canonical PKCα enzyme is a lipid-dependent kinase, in vitro kinase assays show that PKCα-NE displays a high level of basal lipid-independent catalytic activity. Our unbiased proteomic analysis identified a specific interaction between PKCα-NE and eukaryotic elongation factor-1α (eEF1A1). Studies in cardiomyocytes link PKCα-NE expression to an increase in eEF1A1 phosphorylation and elevated protein synthesis. In summary, we have identified a previously uncharacterized muscle-specific PKCα splicing variant, PKCα-NE, with distinct biochemical properties that plays a unique role in the control of the protein synthesis machinery in cardiomyocytes.NEW & NOTEWORTHY PKCα is an important signaling molecule extensively studied in many cellular processes. However, no isoforms have been reported for PKCα except one prototypic isoform. Alternative mRNA splicing of Prkca gene was detected for the first time in rodent and human cardiac tissue, which can produce a previously unknown PKCα-novel exon (NE) isoform. The biochemistry and molecular effects of PKCα-NE are markedly different from PKCα wild type, suggesting potential functional diversity of PKCα signaling in muscle.

Full Text

Duke Authors

Cited Authors

  • Gao, C; Gong, J; Cao, N; Wang, Y; Steinberg, SF

Published Date

  • October 1, 2022

Published In

Volume / Issue

  • 323 / 4

Start / End Page

  • H825 - H832

PubMed ID

  • 36112502

Pubmed Central ID

  • PMC9550568

Electronic International Standard Serial Number (EISSN)

  • 1522-1539

Digital Object Identifier (DOI)

  • 10.1152/ajpheart.00304.2022


  • eng

Conference Location

  • United States