Skip to main content
Journal cover image

Functional topography of the neocortex predicts covariation in complex cognitive and basic motor abilities.

Publication ,  Journal Article
Whitman, ET; Knodt, AR; Elliott, ML; Abraham, WC; Cheyne, K; Hogan, S; Ireland, D; Keenan, R; Leung, JH; Melzer, TR; Poulton, R; Purdy, SC ...
Published in: Cerebral cortex (New York, N.Y. : 1991)
June 2023

Although higher-order cognitive and lower-order sensorimotor abilities are generally regarded as distinct and studied separately, there is evidence that they not only covary but also that this covariation increases across the lifespan. This pattern has been leveraged in clinical settings where a simple assessment of sensory or motor ability (e.g. hearing, gait speed) can forecast age-related cognitive decline and risk for dementia. However, the brain mechanisms underlying cognitive, sensory, and motor covariation are largely unknown. Here, we examined whether such covariation in midlife reflects variability in common versus distinct neocortical networks using individualized maps of functional topography derived from BOLD fMRI data collected in 769 45-year-old members of a population-representative cohort. Analyses revealed that variability in basic motor but not hearing ability reflected individual differences in the functional topography of neocortical networks typically supporting cognitive ability. These patterns suggest that covariation in motor and cognitive abilities in midlife reflects convergence of function in higher-order neocortical networks and that gait speed may not be simply a measure of physical function but rather an integrative index of nervous system health.

Duke Scholars

Altmetric Attention Stats
Dimensions Citation Stats

Published In

Cerebral cortex (New York, N.Y. : 1991)

DOI

EISSN

1460-2199

ISSN

1047-3211

Publication Date

June 2023

Volume

33

Issue

13

Start / End Page

8218 / 8231

Related Subject Headings

  • Neocortex
  • Magnetic Resonance Imaging
  • Humans
  • Experimental Psychology
  • Cognitive Dysfunction
  • Cognition
  • 5204 Cognitive and computational psychology
  • 5202 Biological psychology
  • 3209 Neurosciences
  • 1702 Cognitive Sciences
 

Citation

APA
Chicago
ICMJE
MLA
NLM
Whitman, E. T., Knodt, A. R., Elliott, M. L., Abraham, W. C., Cheyne, K., Hogan, S., … Hariri, A. R. (2023). Functional topography of the neocortex predicts covariation in complex cognitive and basic motor abilities. Cerebral Cortex (New York, N.Y. : 1991), 33(13), 8218–8231. https://doi.org/10.1093/cercor/bhad109
Whitman, Ethan T., Annchen R. Knodt, Maxwell L. Elliott, Wickliffe C. Abraham, Kirsten Cheyne, Sean Hogan, David Ireland, et al. “Functional topography of the neocortex predicts covariation in complex cognitive and basic motor abilities.Cerebral Cortex (New York, N.Y. : 1991) 33, no. 13 (June 2023): 8218–31. https://doi.org/10.1093/cercor/bhad109.
Whitman ET, Knodt AR, Elliott ML, Abraham WC, Cheyne K, Hogan S, et al. Functional topography of the neocortex predicts covariation in complex cognitive and basic motor abilities. Cerebral cortex (New York, NY : 1991). 2023 Jun;33(13):8218–31.
Whitman, Ethan T., et al. “Functional topography of the neocortex predicts covariation in complex cognitive and basic motor abilities.Cerebral Cortex (New York, N.Y. : 1991), vol. 33, no. 13, June 2023, pp. 8218–31. Epmc, doi:10.1093/cercor/bhad109.
Whitman ET, Knodt AR, Elliott ML, Abraham WC, Cheyne K, Hogan S, Ireland D, Keenan R, Leung JH, Melzer TR, Poulton R, Purdy SC, Ramrakha S, Thorne PR, Caspi A, Moffitt TE, Hariri AR. Functional topography of the neocortex predicts covariation in complex cognitive and basic motor abilities. Cerebral cortex (New York, NY : 1991). 2023 Jun;33(13):8218–8231.
Journal cover image

Published In

Cerebral cortex (New York, N.Y. : 1991)

DOI

EISSN

1460-2199

ISSN

1047-3211

Publication Date

June 2023

Volume

33

Issue

13

Start / End Page

8218 / 8231

Related Subject Headings

  • Neocortex
  • Magnetic Resonance Imaging
  • Humans
  • Experimental Psychology
  • Cognitive Dysfunction
  • Cognition
  • 5204 Cognitive and computational psychology
  • 5202 Biological psychology
  • 3209 Neurosciences
  • 1702 Cognitive Sciences