The ionic mechanism of the slow outward current in Aplysia neurons.

Published

Journal Article

A slow outward current associated with spike frequency adaptation has been studied in the giant Aplysia neurons R2 and LP1. The current was observed during 60-s voltage clamp commands to potentials just below spike threshold. The slow outward current shows a marked voltage dependence at membrane potential less negative than -40 mV. The slow outward current is associated with increased membrane conductance. The K+ sensitivity of the slow outward current was studied by varying the extracellular K+ concentration and also by measuring potassium efflux with a K+-sensitive electrode. Both procedures indicated that the slow outward current was K+ dependent. Tail currents following the activation of the slow outward current were examined. They were shown to have a similar potassium sensitivity as the slow outward current and had a reversal potential near the potassium equilibrium potential for these cells. The sensitivity of the slow outward current to known blockers of K+ currents, tetraethylammonium and 4-aminopyridine, was tested. The sensitivity was much less than that reported for other K+ currents. The sensitivity of the slow outward current to changes of the extracellular concentrations of Na+ and Cl- ions, as well as electrogenic pump inhibitors, was tested. The results indicate that the slow outward current is much less sensitive to these changes than to the manipulations of the extracellular K+ ion concentration. We tested the sensitivity of this current to manipulations of intracellular and extracellular Ca2+ ion concentrations. We found that the current persisted at a slightly reduced level in the absence of extracellular calcium or in the presence of calcium blocking agents, cobalt and lanthanum. Intracellular injection of the calcium chelator EGTA at a concentration sufficient to block the Ca2+-dependent K+ current, seen after a brief (1.4-s) burst of action potentials, had minimal effects on the slow outward current. Procedures thought to increase intracellular Ca2+ were tested. We found that exposure of the cell to solutions containing elevated Ca2+ concentrations for prolonged periods increased the slow outward current. Also, treatment with drugs thought to elevate intracellular Ca2+ increased the slow outward current. In conclusion, the slow outward current results from an increased K+ conductance.(ABSTRACT TRUNCATED AT 400 WORDS)

Full Text

Duke Authors

Cited Authors

  • Huguenard, JR; Zbicz, KL; Lewis, DV; Evans, GJ; Wilson, WA

Published Date

  • August 1985

Published In

Volume / Issue

  • 54 / 2

Start / End Page

  • 449 - 461

PubMed ID

  • 2411885

Pubmed Central ID

  • 2411885

International Standard Serial Number (ISSN)

  • 0022-3077

Digital Object Identifier (DOI)

  • 10.1152/jn.1985.54.2.449

Language

  • eng

Conference Location

  • United States