Potential distribution in three-dimensional periodic myocardium--Part I: Solution with two-scale asymptotic analysis.

Published

Journal Article

The use of two-scale asymptotic analysis allows development of a model of the steady-state potential distribution in three-dimensional cardiac muscle preserving the underlying cellular network. The myocardium is modeled as a periodic structure consisting of cylindrical cells embedded in extracellular fluid and connected by longitudinal and side junctions. The method is applicable to cardiac muscle of arbitrary extent since the periodicity of the tissue is dealt with analytically, and thus numerical computations require no more resources than a continuous volume conductor problem. The asymptotic analysis approach reveals that the potential in a periodic myocardium consists of two components. The large-scale component provides the baseline for the total solution and can be determined from the anisotropic monodomain model associated with the original periodic problem. The method provides the formula for calculating the conductivity of the equivalent monodomain model on the basis of cell geometry and conductivity distribution in the cardiac tissue. The small-scale component reflects the periodicity of the underlying structure and oscillates with periods determined by the dimensions of cardiac cells. The magnitude of these oscillations depends upon the gradient of the large-scale component. During stimulation with extracellular electrodes, the small-scale component determines both the shape and the magnitude of the transmembrane potential, while the influence of the large-scale component is negligible. Hence, the small-scale component merits closer attention in pacing and defibrillation studies, especially since the model based on two-scale asymptotic analysis provides an effective means of its computation.

Full Text

Duke Authors

Cited Authors

  • Krassowska, W; Pilkington, TC; Ideker, RE

Published Date

  • March 1, 1990

Published In

Volume / Issue

  • 37 / 3

Start / End Page

  • 252 - 266

PubMed ID

  • 2329000

Pubmed Central ID

  • 2329000

Electronic International Standard Serial Number (EISSN)

  • 1558-2531

International Standard Serial Number (ISSN)

  • 0018-9294

Digital Object Identifier (DOI)

  • 10.1109/10.52327

Language

  • eng