Wanda Krassowska Neu
Professor of Biomedical Engineering

Electroporation-Mediated Drug and Gene Delivery
Electroporation refers to the creation of small (1-40 nm) pores in the lipid bilayer of the membrane in response to large electric shocks. Electroporation occurs as an undesirable side effect in accidental contacts with high voltage wires or when defibrillation shocks are applied to the heart to prevent sudden cardiac death. However, electroporation has also important applications in biotechnology, as pores allow the introduction of drugs and DNA into cells. Still, this technique is largely empirical and the results are often variable and difficult to control. Our research in this area concentrates on the development of a model of electroporation that would allow theoretical investigation of the creation of pores during the shock, the flow of ions, drugs, and DNA through pores, and the resulting changes in intracellular concentrations.

Nonlinear Dynamics Approach to Cardiac Arrhythmias
Cardiac arrhythmias, serious and potentially fatal diseases, can only rarely be successfully controlled with medication. The only available treatment is defibrillation, the delivery of a large electric shock. Such shocks often have serious side effects. Our research investigates the feasibility of alternative treatments for cardiac tachyarrhythmias that instead of large shocks use an appropriately timed train of small pulses. The approach is based on the feedback protocols that have been developed to control the dynamics of complex nonlinear systems and involves animal experiments, mathematical modeling, and computer simulations. These studies allow us to gain a better insight into the dynamics of cardiac rhythm and to assess the feasibility of bringing an episode of arrhythmia under control, terminate it, or even inhibit its occurrence.

Current Research Interests

Electroporation-mediated drug delivery and gene therapy; Control of cardiac arrhythmias using nonlinear dynamics

Current Appointments & Affiliations

Contact Information

  • 1151 CIEMAS, 101 Science Drive, Durham, NC 27708
  • Box 90281, Durham, NC 27708-0281
  • uri icon personal web page

Some information on this profile has been compiled automatically from Duke databases and external sources. (Our About page explains how this works.) If you see a problem with the information, please write to Scholars@Duke and let us know. We will reply promptly.