Collagen gene expression and mechanical properties of intervertebral disc cell-alginate cultures.

Cells of the intervertebral disc have a limited capacity for matrix repair that may contribute to the onset and progression of degenerative disc changes. In this study, the biosynthetic capacity of cells isolated from specific regions of the porcine intervertebral disc was evaluated in vitro. Using a competitive reverse transcription-polymerase chain reaction technique, gene expression levels for types I and II collagen were quantified in cells cultured for up to 21 d in a three-dimensional alginate culture system and compared to levels obtained for cells in vivo. The mechanical properties of cell-alginate constructs were measured in compression and shear after periods of culture up to 16 weeks. Cells from the anulus fibrosus expressed the most type I collagen mRNA in vivo and in vitro, while cells from the transition zone expressed the most type II collagen mRNA in vivo and in vitro. Mechanical testing results indicate that a mechanically functional matrix did not form at any time during the culture period; rather, decreases of up to 50% were observed in the compressive and shear moduli of the cell-alginate constructs compared to alginate with no cells. Together with results of prior studies, these results suggest that intervertebral disc cells maintain characteristics of their phenotype when cultured in alginate, but the molecules they synthesize are not able to form a mechanically functional matrix in vitro.

Full Text

Duke Authors

Cited Authors

  • Baer, AE; Wang, JY; Kraus, VB; Setton, LA

Published Date

  • January 2001

Published In

Volume / Issue

  • 19 / 1

Start / End Page

  • 2 - 10

PubMed ID

  • 11332616

International Standard Serial Number (ISSN)

  • 0736-0266

Digital Object Identifier (DOI)

  • 10.1016/S0736-0266(00)00003-6

Language

  • eng

Citation Source

  • PubMed