Evidence for a novel insulin-like growth factor (IGF)-dependent protease regulating IGF-binding protein-4 in dermal fibroblasts.

Published

Journal Article

The mechanisms by which insulin-like growth factors (IGFs) reduce IGF-binding protein-4 (IGFBP-4) levels in cellular conditioned media are poorly understood. The effect of IGFs on IGFBP-4 levels in fibroblast conditioned media is not mediated via the type 1 or type 2 cellular IGF receptors, and the IGFs exert little or no effects on IGFBP-4 messenger RNA levels in human adult fibroblasts or in rat neuroblastoma cells. To determine whether the effects of IGFs on IGFBP-4 might be exerted through alterations in IGFBP-4 degradation, we incubated cell-free, fibroblast-conditioned media from either sheep or human dermal fibroblasts with or without IGF-I, IGF-II (each 1 microgram/ml), or insulin (10 micrograms/ml) for 72 h at 37 C. Samples were then analyzed by Western ligand blot using radiolabeled IGFs and by immunoblotting using a polyclonal antisera to human IGFBP-4. In the absence of IGFs, no apparent changes in the basal concentrations of the various IGFBPs were observed. In contrast, incubation of media with IGFs caused a 70-80% reduction in levels of both sheep and human IGFBP-4, whereas incubation with insulin was without effect. Similarly, incubation of cell-free conditioned media containing recombinant human IGFBP-4 with IGF-I caused a reduction in detectable levels of the 28K protein. The decrease in IGFBP-4 levels was accompanied by the appearance of an immunoreactive approximate 17-20K fragment that did not bind radiolabeled IGFs by ligand blot. The IGF-dependent decrease in IGFBP-4 was prevented by coincubation of the media with serine protease inhibitors, EDTA, or 1,10-phenanthrolene, suggesting that IGFs may activate an IGFBP-4 specific metallo-serine protease present in fibroblast conditioned media. Alternatively, binding of IGF-I or -II to IGFBP-4 may enhance the susceptibility of IGFBP-4 to proteolytic degradation. The demonstration that IGF-I and IGF-II can promote directly the proteolytic degradation of IGFBP-4 into fragments that do not bind IGFs provides a novel mechanism by which the IGFs may increase their own availability and/or activity in biological fluids.

Full Text

Duke Authors

Cited Authors

  • Fowlkes, J; Freemark, M

Published Date

  • November 1992

Published In

Volume / Issue

  • 131 / 5

Start / End Page

  • 2071 - 2076

PubMed ID

  • 1385096

Pubmed Central ID

  • 1385096

International Standard Serial Number (ISSN)

  • 0013-7227

Digital Object Identifier (DOI)

  • 10.1210/endo.131.5.1385096

Language

  • eng

Conference Location

  • United States