Predictors of increased PaCO2 during immersed prone exercise at 4.7 ATA.

Journal Article (Journal Article)

During diving, arterial Pco(2) (Pa(CO(2))) levels can increase and contribute to psychomotor impairment and unconsciousness. This study was designed to investigate the effects of the hypercapnic ventilatory response (HCVR), exercise, inspired Po(2), and externally applied transrespiratory pressure (P(tr)) on Pa(CO(2)) during immersed prone exercise in subjects breathing oxygen-nitrogen mixes at 4.7 ATA. Twenty-five subjects were studied at rest and during 6 min of exercise while dry and submersed at 1 ATA and during exercise submersed at 4.7 ATA. At 4.7 ATA, subsets of the 25 subjects (9-10 for each condition) exercised as P(tr) was varied between +10, 0, and -10 cmH(2)O; breathing gas Po(2) was 0.7, 1.0, and 1.3 ATA; and inspiratory and expiratory breathing resistances were varied using 14.9-, 11.6-, and 10.2-mm-diameter-aperture disks. During exercise, Pa(CO(2)) (Torr) increased from 31.5 +/- 4.1 (mean +/- SD for all subjects) dry to 34.2 +/- 4.8 (P = 0.02) submersed, to 46.1 +/- 5.9 (P < 0.001) at 4.7 ATA during air breathing and to 49.9 +/- 5.4 (P < 0.001 vs. 1 ATA) during breathing with high external resistance. There was no significant effect of inspired Po(2) or P(tr) on Pa(CO(2)) or minute ventilation (Ve). Ve (l/min) decreased from 89.2 +/- 22.9 dry to 76.3 +/- 20.5 (P = 0.02) submersed, to 61.6 +/- 13.9 (P < 0.001) at 4.7 ATA during air breathing and to 49.2 +/- 7.3 (P < 0.001) during breathing with resistance. We conclude that the major contributors to increased Pa(CO(2)) during exercise at 4.7 ATA are increased depth and external respiratory resistance. HCVR and maximal O(2) consumption were also weakly predictive. The effects of P(tr), inspired Po(2), and O(2) consumption during short-term exercise were not significant.

Full Text

Duke Authors

Cited Authors

  • Cherry, AD; Forkner, IF; Frederick, HJ; Natoli, MJ; Schinazi, EA; Longphre, JP; Conard, JL; White, WD; Freiberger, JJ; Stolp, BW; Pollock, NW; Doar, PO; Boso, AE; Alford, EL; Walker, AJ; Ma, AC; Rhodes, MA; Moon, RE

Published Date

  • January 2009

Published In

Volume / Issue

  • 106 / 1

Start / End Page

  • 316 - 325

PubMed ID

  • 18787095

International Standard Serial Number (ISSN)

  • 8750-7587

Digital Object Identifier (DOI)

  • 10.1152/japplphysiol.00885.2007


  • eng

Conference Location

  • United States