Skip to main content

An effector site that stimulates G-protein GTPase in photoreceptors.

Publication ,  Journal Article
Slepak, VZ; Artemyev, NO; Zhu, Y; Dumke, CL; Sabacan, L; Sondek, J; Hamm, HE; Bownds, MD; Arshavsky, VY
Published in: J Biol Chem
June 16, 1995

Heterotrimeric G-proteins mediate between receptors and effectors, acting as molecular clocks. G-protein interactions with activated receptors catalyze the replacement of GDP bound to the alpha-subunit with GTP. alpha-Subunits then modulate the activity of downstream effectors until the bound GTP is hydrolyzed. In several signal transduction pathways, including the cGMP cascade of photoreceptor cells, the relatively slow GTPase activity of heterotrimeric G-proteins can be significantly accelerated when they are complexed with corresponding effectors. In the phototransduction cascade the GTPase activity of photoreceptor G-protein, transducin, is substantially accelerated in a complex with its effector, cGMP phosphodiesterase. Here we characterize the stimulation of transducin GTPase by a set of 23 mutant phosphodiesterase gamma-subunits (PDE gamma) containing single alanine substitutions within a stretch of the 25 C-terminal amino acid residues known to be primarily responsible for the GTPase regulation. The substitution of tryptophan at position 70 completely abolished the acceleration of GTP hydrolysis by transducin in a complex with this mutant. This mutation also resulted in a reduction of PDE gamma affinity for transducin, but did not affect PDE gamma interactions with the phosphodiesterase catalytic subunits. Single substitutions of 7 other hydrophobic amino acids resulted in a 50-70% reduction in the ability of PDE gamma to stimulate transducin GTPase, while substitutions of charged and polar amino acids had little or no effect. These observations suggest that the role of PDE gamma in activation of the transducin GTPase rate may be based on multiple hydrophobic interactions between these molecules.

Duke Scholars

Published In

J Biol Chem

DOI

ISSN

0021-9258

Publication Date

June 16, 1995

Volume

270

Issue

24

Start / End Page

14319 / 14324

Location

United States

Related Subject Headings

  • Transducin
  • Rod Cell Outer Segment
  • Protein Binding
  • Photoreceptor Cells
  • Mutagenesis
  • Molecular Sequence Data
  • Guanosine 5'-O-(3-Thiotriphosphate)
  • GTP Phosphohydrolases
  • Enzyme Activation
  • Biochemistry & Molecular Biology
 

Citation

APA
Chicago
ICMJE
MLA
NLM
Slepak, V. Z., Artemyev, N. O., Zhu, Y., Dumke, C. L., Sabacan, L., Sondek, J., … Arshavsky, V. Y. (1995). An effector site that stimulates G-protein GTPase in photoreceptors. J Biol Chem, 270(24), 14319–14324. https://doi.org/10.1074/jbc.270.24.14319
Slepak, V. Z., N. O. Artemyev, Y. Zhu, C. L. Dumke, L. Sabacan, J. Sondek, H. E. Hamm, M. D. Bownds, and V. Y. Arshavsky. “An effector site that stimulates G-protein GTPase in photoreceptors.J Biol Chem 270, no. 24 (June 16, 1995): 14319–24. https://doi.org/10.1074/jbc.270.24.14319.
Slepak VZ, Artemyev NO, Zhu Y, Dumke CL, Sabacan L, Sondek J, et al. An effector site that stimulates G-protein GTPase in photoreceptors. J Biol Chem. 1995 Jun 16;270(24):14319–24.
Slepak, V. Z., et al. “An effector site that stimulates G-protein GTPase in photoreceptors.J Biol Chem, vol. 270, no. 24, June 1995, pp. 14319–24. Pubmed, doi:10.1074/jbc.270.24.14319.
Slepak VZ, Artemyev NO, Zhu Y, Dumke CL, Sabacan L, Sondek J, Hamm HE, Bownds MD, Arshavsky VY. An effector site that stimulates G-protein GTPase in photoreceptors. J Biol Chem. 1995 Jun 16;270(24):14319–14324.

Published In

J Biol Chem

DOI

ISSN

0021-9258

Publication Date

June 16, 1995

Volume

270

Issue

24

Start / End Page

14319 / 14324

Location

United States

Related Subject Headings

  • Transducin
  • Rod Cell Outer Segment
  • Protein Binding
  • Photoreceptor Cells
  • Mutagenesis
  • Molecular Sequence Data
  • Guanosine 5'-O-(3-Thiotriphosphate)
  • GTP Phosphohydrolases
  • Enzyme Activation
  • Biochemistry & Molecular Biology