Vadim Y Arshavsky
Helena Rubinstein Foundation Distinguished Professor of Ophthalmology

Research conducted in our laboratory is dedicated to understanding how vision is performed on the molecular level. Our most mature direction addresses the function of rod and cone photoreceptors, which are sensory neurons responsible for the detection and primary processing of information entering the eye in the form of photons. Photoreceptors respond to capturing photons by generating electrical signals transmitted to the secondary neurons in the retina and, ultimately, to the brain. Our work is dedicated to uncovering the molecular mechanisms underlying three essential photoreceptor functions: their uniquely high light-sensitivity, their ability to rapidly recover from light excitation, and their capacity to modulate light-responses upon broad variations in the intensity of ambient illumination.

Our second direction is to elucidate the cellular processes responsible for building the light-sensitive organelle of photoreceptor cells, called the outer segment, and for populating this organelle with proteins conducting visual signaling. Of particular interest is the mechanism by which outer segments form their “disc” membrane stacks providing vast membrane surfaces for effective photon capture.

Finally, we are seeking connections between understanding the basic function of rods and cones and practical, translational approaches to ameliorate the retinal degeneration caused by mutations in critical photoreceptor-specific proteins. Most importantly, we explore the link between the balance of protein synthesis and degradation in photoreceptor cells (the “proteostasis”) and the status of their health.

Current Appointments & Affiliations

Contact Information

Some information on this profile has been compiled automatically from Duke databases and external sources. (Our About page explains how this works.) If you see a problem with the information, please write to Scholars@Duke and let us know. We will reply promptly.