High efficiency electrodes for deep brain stimulation.
Journal Article (Journal Article)
Deep brain stimulators are powered with primary cell batteries and require surgical replacement when they are depleted. We sought to decrease power consumption, and thereby increase device lifetime by increasing neuronal stimulating efficiency with novel electrode designs. Our hypothesis was that high-perimeter electrodes that increase the variation of current density on their surface would generate larger activating functions for surrounding neurons, hence increasing stimulation efficiency. We implemented finite element models of cylindrical DBS electrodes with conventional circular perimeters, with serpentine perimeters, and with segmented contacts. The high-perimeter electrodes significantly increased the variation of current density on the electrode surface. We randomly positioned a population of 100 model axons around the electrodes and quantified neural activation with 100 micros cathodic stimuli. Input-output curves of percentage axons activated as a function of stimulation intensity indicated that the novel electrode geometries decreased power consumption by up to approximately 20% for axons parallel to the electrode and up to approximately 35% for axons perpendicular to the electrode. Reduced power consumption achieved with these designs will reduce the costs and risks associated with surgeries to replace depleted stimulators.
Full Text
Duke Authors
Cited Authors
- Grill, WM; Wei, XF
Published Date
- January 2009
Published In
- Annual International Conference of the Ieee Engineering in Medicine and Biology Society. Ieee Engineering in Medicine and Biology Society. Annual International Conference
Volume / Issue
- 2009 /
Start / End Page
- 3298 - 3301
PubMed ID
- 19964297
Pubmed Central ID
- PMC3683652
Electronic International Standard Serial Number (EISSN)
- 2694-0604
International Standard Serial Number (ISSN)
- 2375-7477
Digital Object Identifier (DOI)
- 10.1109/iembs.2009.5333774
Language
- eng