Building knowledge in a complex preterm birth problem domain.
Journal Article
Data mining methods used a racially diverse sample (n = 19,970) of pregnant women and 1,622 variables that were collected in Duke's TMR electronic patient record over a 10-year period. Different statistical and data mining methods were similar when compared using receiver operating characteristic (ROC) curves. Best results found that seven demographic variables yielded .72 and addition of hundreds of other clinical variables added only .03 to the area under the curve (AUC). Similar results across methods suggest that results were data-driven and not method-dependent, and that demographic variables may offer a small set of parsimonious variables with predictive accuracy in a racially diverse population. Work to determine relevant variables for improved predictive accuracy is ongoing.
Full Text
Duke Authors
Cited Authors
- Goodwin, L; Maher, S; Ohno-Machado, L; Iannacchione, MA; Crockett, P; Dreiseitl, S; Vinterbo, S; Hammond, W
Published Date
- 2000
Published In
Start / End Page
- 305 - 309
PubMed ID
- 11079894
Pubmed Central ID
- 11079894
International Standard Serial Number (ISSN)
- 1531-605X
Language
- eng
Conference Location
- United States