Skip to main content

Candidate topical microbicides bind herpes simplex virus glycoprotein B and prevent viral entry and cell-to-cell spread.

Publication ,  Journal Article
Cheshenko, N; Keller, MJ; MasCasullo, V; Jarvis, GA; Cheng, H; John, M; Li, J-H; Hogarty, K; Anderson, RA; Waller, DP; Zaneveld, LJD ...
Published in: Antimicrob Agents Chemother
June 2004

Topical microbicides designed to prevent acquisition of sexually transmitted infections are urgently needed. Nonoxynol-9, the only commercially available spermicide, damages epithelium and may enhance human immunodeficiency virus transmission. The observation that herpes simplex virus (HSV) and human immunodeficiency virus bind heparan sulfate provided the rationale for the development of sulfated or sulfonated polymers as topical agents. Although several of the polymers have advanced to clinical trials, the spectrum and mechanism of anti-HSV activity and the effects on soluble mediators of inflammation have not been evaluated. The present studies address these gaps. The results indicate that PRO 2000, polystyrene sulfonate, cellulose sulfate, and polymethylenehydroquinone sulfonate inhibit HSV infection 10,000-fold and are active against clinical isolates, including an acyclovir-resistant variant. The compounds formed stable complexes with glycoprotein B and inhibit viral binding, entry, and cell-to-cell spread. The effects may be long lasting due to the high affinity and stability of the sulfated compound-virus complex, as evidenced by surface plasmon resonance studies. The candidate microbicides retained their antiviral activities in the presence of cervical secretions and over a broad pH range. There was little reduction in cell viability following repeated exposure of human endocervical cells to these compounds, although a reduction in secretory leukocyte protease inhibitor levels was observed. These studies support further development and rigorous evaluation of these candidate microbicides.

Duke Scholars

Altmetric Attention Stats
Dimensions Citation Stats

Published In

Antimicrob Agents Chemother

DOI

ISSN

0066-4804

Publication Date

June 2004

Volume

48

Issue

6

Start / End Page

2025 / 2036

Location

United States

Related Subject Headings

  • Viral Plaque Assay
  • Viral Envelope Proteins
  • Surface Plasmon Resonance
  • Protein Binding
  • Polysaccharides
  • Microbiology
  • Kinetics
  • Hydrogen-Ion Concentration
  • Humans
  • History, 17th Century
 

Citation

APA
Chicago
ICMJE
MLA
NLM
Cheshenko, N., Keller, M. J., MasCasullo, V., Jarvis, G. A., Cheng, H., John, M., … Herold, B. C. (2004). Candidate topical microbicides bind herpes simplex virus glycoprotein B and prevent viral entry and cell-to-cell spread. Antimicrob Agents Chemother, 48(6), 2025–2036. https://doi.org/10.1128/AAC.48.6.2025-2036.2004
Cheshenko, Natalia, Marla J. Keller, Veronica MasCasullo, Gary A. Jarvis, Hui Cheng, Minnie John, Jin-Hua Li, et al. “Candidate topical microbicides bind herpes simplex virus glycoprotein B and prevent viral entry and cell-to-cell spread.Antimicrob Agents Chemother 48, no. 6 (June 2004): 2025–36. https://doi.org/10.1128/AAC.48.6.2025-2036.2004.
Cheshenko N, Keller MJ, MasCasullo V, Jarvis GA, Cheng H, John M, et al. Candidate topical microbicides bind herpes simplex virus glycoprotein B and prevent viral entry and cell-to-cell spread. Antimicrob Agents Chemother. 2004 Jun;48(6):2025–36.
Cheshenko, Natalia, et al. “Candidate topical microbicides bind herpes simplex virus glycoprotein B and prevent viral entry and cell-to-cell spread.Antimicrob Agents Chemother, vol. 48, no. 6, June 2004, pp. 2025–36. Pubmed, doi:10.1128/AAC.48.6.2025-2036.2004.
Cheshenko N, Keller MJ, MasCasullo V, Jarvis GA, Cheng H, John M, Li J-H, Hogarty K, Anderson RA, Waller DP, Zaneveld LJD, Profy AT, Klotman ME, Herold BC. Candidate topical microbicides bind herpes simplex virus glycoprotein B and prevent viral entry and cell-to-cell spread. Antimicrob Agents Chemother. 2004 Jun;48(6):2025–2036.

Published In

Antimicrob Agents Chemother

DOI

ISSN

0066-4804

Publication Date

June 2004

Volume

48

Issue

6

Start / End Page

2025 / 2036

Location

United States

Related Subject Headings

  • Viral Plaque Assay
  • Viral Envelope Proteins
  • Surface Plasmon Resonance
  • Protein Binding
  • Polysaccharides
  • Microbiology
  • Kinetics
  • Hydrogen-Ion Concentration
  • Humans
  • History, 17th Century