Co-precipitation of carbon and oxygen in silicon: The dominant flux criterion

Due to the need of relieving the strain associated with the formation of SiO2 precipitates in silicon, co-precipitation of carbon with oxygen in silicon wafers may involve a large number of atomic and point defect species: oxygen, carbon, vacancies, and silicon self-interstitials. This allows many parallel mechanisms for strain relief to occur. In the present paper we first reason that this complex system may be reduced to that involving only three species: oxygen, carbon, and self-interstitials; and the strain relief mechanisms may be limited to two: that via self-interstitials and that involving carbon. We then propose a dominant (strain relief species) flux criteria to explain the behavior of carbon and oxygen co-precipitation in silicon. When the carbon flux is dominant, carbon should co-precipitate with oxygen. When the silicon self-interstitial flux is dominant, carbon should not co-precipitate with oxygen, even at high concentrations. Available data, spanning the temperature range of 450-1000 °C and a carbon concentration range of from less than 0.5×1016 to 1×1018 cm-3, can be explained using this criterion.

Duke Authors

Cited Authors

  • Taylor, WJ; Gosele, UM; Tan, TY

Published Date

  • 1993

Published In

Volume / Issue

  • 32 / 11 A

Start / End Page

  • 4857 - 4862

International Standard Serial Number (ISSN)

  • 0021-4922

Citation Source

  • SciVal