Functional magnetic resonance imaging with intermolecular multiple-quantum coherences.

Journal Article (Journal Article)

For the first time, we demonstrate here functional magnetic resonance imaging (fMRI) using intermolecular multiple-quantum coherences (iMQCs). iMQCs are normally not observed in liquid-state NMR because dipolar interactions between spins average to zero. If the magnetic isotropy of the sample is broken through the use of magnetic field gradients, dipolar couplings can reappear, and hence iMQCs can be observed. Conventional (BOLD) fMRI measures susceptibility variations averaged over each voxel. In the experiment performed here, the sensitivity of iMQCs to frequency variations over mesoscopic and well-defined distances is exploited. We show that iMQC contrast is qualitatively and quantitatively different from BOLD contrast in a visual stimulation task. While the number of activated pixels is smaller in iMQC contrast, the intensity change in some pixels exceeds that of BOLD contrast severalfold.

Full Text

Duke Authors

Cited Authors

  • Richter, W; Richter, M; Warren, WS; Merkle, H; Andersen, P; Adriany, G; Ugurbil, K

Published Date

  • June 2000

Published In

Volume / Issue

  • 18 / 5

Start / End Page

  • 489 - 494

PubMed ID

  • 10913709

Electronic International Standard Serial Number (EISSN)

  • 1873-5894

International Standard Serial Number (ISSN)

  • 0730-725X

Digital Object Identifier (DOI)

  • 10.1016/s0730-725x(00)00133-8


  • eng