Dimensional dependence of the Stokes-Einstein relation and its violation.
We generalize to higher spatial dimensions the Stokes-Einstein relation (SER) as well as the leading correction to diffusivity in finite systems with periodic boundary conditions, and validate these results with numerical simulations. We then investigate the evolution of the high-density SER violation with dimension in simple hard sphere glass formers. The analysis suggests that this SER violation disappears around dimension d(u) = 8, above which it is not observed. The critical exponent associated with the violation appears to evolve linearly in 8 - d, below d = 8, as predicted by Biroli and Bouchaud [J. Phys.: Condens. Matter 19, 205101 (2007)], but the linear coefficient is not consistent with the prediction. The SER violation with d establishes a new benchmark for theory, and its complete description remains an open problem.
Duke Scholars
Altmetric Attention Stats
Dimensions Citation Stats
Published In
DOI
EISSN
ISSN
Publication Date
Volume
Issue
Start / End Page
Related Subject Headings
- Chemical Physics
- 51 Physical sciences
- 40 Engineering
- 34 Chemical sciences
- 09 Engineering
- 03 Chemical Sciences
- 02 Physical Sciences
Citation
Published In
DOI
EISSN
ISSN
Publication Date
Volume
Issue
Start / End Page
Related Subject Headings
- Chemical Physics
- 51 Physical sciences
- 40 Engineering
- 34 Chemical sciences
- 09 Engineering
- 03 Chemical Sciences
- 02 Physical Sciences