Microfluidics-based biochips: Technology issues, implementation platforms, and design automation challenges
Microfluidics-based biochips are soon expected to revolutionize clinical diagnosis, DNA sequencing, and other laboratory procedures involving molecular biology. In contrast to continuous-flow systems that rely on permanently-etched microchannels, micropumps, and microvalves, digital microfluidics offers a scalable system architecture and dynamic reconfigurability; groups of unit cells in a microfluidics array can be reconfigured to change their functionality during the concurrent execution of a set of bioassays. As more bioassays are executed concurrently on a biochip, system integration and design complexity are expected to increase dramatically. We present an overview of an integrated system-level design methodology that attempts to address key issues in the synthesis, testing and reconfiguration of digital microfluidics-based biochips. Different actuation mechanisms for microfluidics-based biochips, and associated design automation trends and challenges are also discussed. The proposed top-down design automation approach is expected to relieve biochip users from the burden of manual optimization of bioassays, time-consuming hardware design, and costly testing and maintenance procedures, and it will facilitate the integration of fluidic components with microelectronic component in nextgeneration SOCs. © 2006 Springer.