Lossless online Bayesian bagging
© 2004 Herbert K. H. Lee and Merlise A. Clyde. Bagging frequently improves the predictive performance of a model. An online version has recently been introduced, which attempts to gain the benefits of an online algorithm while approximating regular bagging. However, regular online bagging is an approximation to its batch counterpart and so is not lossless with respect to the bagging operation. By operating under the Bayesian paradigm, we introduce an online Bayesian version of bagging which is exactly equivalent to the batch Bayesian version, and thus when combined with a lossless learning algorithm gives a completely lossless online bagging algorithm. We also note that the Bayesian formulation resolves a theoretical problem with bagging, produces less variability in its estimates, and can improve predictive performance for smaller data sets.
Duke Scholars
Published In
EISSN
ISSN
Publication Date
Volume
Start / End Page
Related Subject Headings
- Artificial Intelligence & Image Processing
- 4905 Statistics
- 4611 Machine learning
- 17 Psychology and Cognitive Sciences
- 08 Information and Computing Sciences
Citation
Published In
EISSN
ISSN
Publication Date
Volume
Start / End Page
Related Subject Headings
- Artificial Intelligence & Image Processing
- 4905 Statistics
- 4611 Machine learning
- 17 Psychology and Cognitive Sciences
- 08 Information and Computing Sciences