Single- and multiple-track-location shear wave and acoustic radiation force impulse imaging: matched comparison of contrast, contrast-to-noise ratio and resolution.
Acoustic radiation force impulse imaging and shear wave elasticity imaging (SWEI) use the dynamic response of tissue to impulsive mechanical stimulus to characterize local elasticity. A variant of conventional, multiple-track-location SWEI, denoted single-track-location SWEI, offers the promise of creating speckle-free shear wave images. This work compares the three imaging modalities using a high push and track beam density combined acquisition sequence to image inclusions of different sizes and contrasts. Single-track-location SWEI is found to have a significantly higher contrast-to-noise ratio than multiple-track-location SWEI, allowing for operation at higher resolution. Acoustic radiation force impulse imaging and single-track-location SWEI perform similarly in the larger inclusions, with single-track-location SWEI providing better visualization of small targets ≤ 2.5 mm in diameter. The processing of each modality introduces different trade-offs between smoothness and resolution of edges and structures; these are discussed in detail.
Duke Scholars
Altmetric Attention Stats
Dimensions Citation Stats
Published In
DOI
EISSN
ISSN
Publication Date
Volume
Issue
Start / End Page
Related Subject Headings
- Phantoms, Imaging
- Models, Biological
- Image Interpretation, Computer-Assisted
- Elasticity Imaging Techniques
- Elastic Modulus
- Acoustics
- 3202 Clinical sciences
- 1103 Clinical Sciences
Citation
Published In
DOI
EISSN
ISSN
Publication Date
Volume
Issue
Start / End Page
Related Subject Headings
- Phantoms, Imaging
- Models, Biological
- Image Interpretation, Computer-Assisted
- Elasticity Imaging Techniques
- Elastic Modulus
- Acoustics
- 3202 Clinical sciences
- 1103 Clinical Sciences