Skip to main content
construction release_alert
Scholars@Duke will be undergoing maintenance April 11-15. Some features may be unavailable during this time.
cancel
Journal cover image

Heterogeneity of competition at decameter scale: patches of high canopy leaf area in a shade-intolerant larch stand transpire less yet are more sensitive to drought.

Publication ,  Journal Article
Xiong, W; Oren, R; Wang, Y; Yu, P; Liu, H; Cao, G; Xu, L; Wang, Y; Zuo, H
Published in: Tree physiology
May 2015

Small differences in the sensitivity of stomatal conductance to light intensity on leaf surfaces may lead to large differences in total canopy transpiration (EC) with increasing canopy leaf area (L). Typically, the increase of L would more than compensate for the decrease of transpiration per unit of leaf area (EL), resulting in concurrent increase of EC. However, highly shade-intolerant species, such as Larix principis-rupprechtii Mayr., may be so sensitive to increased shading that such compensation is not complete. We hypothesized that in such a stand, windfall-induced spatial variation at a decameter scale would result in greatly reduced EL in patches of high L leading to lower EC than low competition patches of sparse canopy. We further hypothesized that quicker extraction of soil moisture in patches of lower competition will result in earlier onset of drought symptoms in these patches. Thus, patches of low L will transition from light to soil moisture as the factor dominating EL. This process should progressively homogenize EC in the stand even as the variation of soil moisture is increasing. We tested the hypotheses utilizing sap flux of nine trees, and associated environmental and stand variables. The results were consistent with only some of the expectations. Under non-limiting soil moisture, EL was very sensitive to the spatial variation of L, decreasing sharply with increasing L and associated decrease of mean light intensity on leaf surfaces. Thus, under the conditions of ample soil moisture maximum EC decreased with increasing patch-scale L. Annual EC and biomass production also decreased with L, albeit more weakly. Furthermore, variation of EC among patches decreased as average stand soil moisture declined between rain events. However, contrary to expectation, high L plots which transpired less showed a greater EL sensitivity to decreasing stand-scale soil moisture, suggesting a different mechanism than simple control by decreasing soil moisture. We offer potential explanations to the observed phenomenon. Our results demonstrate that spatial variation of L at decameter scale, even within relatively homogeneous, single-species, even-aged stands, can produce large variation of transpiration, soil moisture and biomass production and should be considered in 1-D soil-plant-atmosphere models.

Duke Scholars

Published In

Tree physiology

DOI

EISSN

1758-4469

ISSN

0829-318X

Publication Date

May 2015

Volume

35

Issue

5

Start / End Page

470 / 484

Related Subject Headings

  • Trees
  • Plant Transpiration
  • Plant Stomata
  • Plant Leaves
  • Plant Biology & Botany
  • Light
  • Larix
  • Droughts
  • China
  • 4101 Climate change impacts and adaptation
 

Citation

APA
Chicago
ICMJE
MLA
NLM
Xiong, W., Oren, R., Wang, Y., Yu, P., Liu, H., Cao, G., … Zuo, H. (2015). Heterogeneity of competition at decameter scale: patches of high canopy leaf area in a shade-intolerant larch stand transpire less yet are more sensitive to drought. Tree Physiology, 35(5), 470–484. https://doi.org/10.1093/treephys/tpv022
Xiong, Wei, Ram Oren, Yanhui Wang, Pengtao Yu, Hailong Liu, Gongxiang Cao, Lihong Xu, Yunni Wang, and Haijun Zuo. “Heterogeneity of competition at decameter scale: patches of high canopy leaf area in a shade-intolerant larch stand transpire less yet are more sensitive to drought.Tree Physiology 35, no. 5 (May 2015): 470–84. https://doi.org/10.1093/treephys/tpv022.
Xiong, Wei, et al. “Heterogeneity of competition at decameter scale: patches of high canopy leaf area in a shade-intolerant larch stand transpire less yet are more sensitive to drought.Tree Physiology, vol. 35, no. 5, May 2015, pp. 470–84. Epmc, doi:10.1093/treephys/tpv022.
Journal cover image

Published In

Tree physiology

DOI

EISSN

1758-4469

ISSN

0829-318X

Publication Date

May 2015

Volume

35

Issue

5

Start / End Page

470 / 484

Related Subject Headings

  • Trees
  • Plant Transpiration
  • Plant Stomata
  • Plant Leaves
  • Plant Biology & Botany
  • Light
  • Larix
  • Droughts
  • China
  • 4101 Climate change impacts and adaptation