Skip to main content

Mass absorption efficiency of elemental carbon and water-soluble organic carbon in Beijing, China

Publication ,  Journal Article
Cheng, Y; He, KB; Zheng, M; Duan, FK; Du, ZY; Ma, YL; Tan, JH; Yang, FM; Liu, JM; Zhang, XL; Weber, RJ; Bergin, MH; Russell, AG
Published in: Atmospheric Chemistry and Physics
November 28, 2011

The mass absorption efficiency (MAE) of elemental carbon (EC) in Beijing was quantified using a thermal-optical carbon analyzer. The MAE measured at 632 nm was 8.45±1.71 and 9.41±1.92 m2 g-1 during winter and summer respectively. The daily variation of MAE was found to coincide with the abundance of organic carbon (OC), especially the OC to EC ratio, perhaps due to the enhancement by coating with organic aerosol (especially secondary organic aerosol, SOA) or the artifacts resulting from the redistribution of liquid-like organic particles during the filter-based absorption measurements. Using a converting approach that accounts for the discrepancy caused by measurements methods of both light absorption and EC concentration, previously published MAE values were converted to the equivalent-MAE, which is the estimated value if using the same measurement methods as used in this study. The equivalent-MAE was found to be much lower in the regions heavily impacted by biomass burning (e.g., below 2.7 m m2 g-1 for two Indian cities). Results from source samples (including diesel exhaust samples and biomass smoke samples) also demonstrated that emissions from biomass burning would decrease the MAE of EC. Moreover, optical properties of water-soluble organic carbon (WSOC) in Beijing were presented. Light absorption by WSOC exhibited strong wavelength (λ) dependence such that absorption varied approximately as λ -7, which was characteristic of the brown carbon spectra. The MAE of WSOC (measured at 365 nm) was 1.79±0.24 and 0.71±0.20 m2 g-1 during winter and summer respectively. The large discrepancy between the MAE of WSOC during winter and summer was attributed to the difference in the precursors of SOA such that anthropogenic volatile organic compounds (AVOCs) should be more important as the precursors of SOA in winter. The MAE of WSOC in Beijing was much higher than results from the southeastern United States which were obtained using the same method as used in this study, perhaps due to the stronger emissions of biomass burning in China. © 2011 Author(s).

Duke Scholars

Published In

Atmospheric Chemistry and Physics

DOI

EISSN

1680-7324

ISSN

1680-7316

Publication Date

November 28, 2011

Volume

11

Issue

22

Start / End Page

11497 / 11510

Related Subject Headings

  • Meteorology & Atmospheric Sciences
  • 3702 Climate change science
  • 3701 Atmospheric sciences
  • 0401 Atmospheric Sciences
  • 0201 Astronomical and Space Sciences
 

Citation

APA
Chicago
ICMJE
MLA
NLM
Cheng, Y., He, K. B., Zheng, M., Duan, F. K., Du, Z. Y., Ma, Y. L., … Russell, A. G. (2011). Mass absorption efficiency of elemental carbon and water-soluble organic carbon in Beijing, China. Atmospheric Chemistry and Physics, 11(22), 11497–11510. https://doi.org/10.5194/acp-11-11497-2011
Cheng, Y., K. B. He, M. Zheng, F. K. Duan, Z. Y. Du, Y. L. Ma, J. H. Tan, et al. “Mass absorption efficiency of elemental carbon and water-soluble organic carbon in Beijing, China.” Atmospheric Chemistry and Physics 11, no. 22 (November 28, 2011): 11497–510. https://doi.org/10.5194/acp-11-11497-2011.
Cheng Y, He KB, Zheng M, Duan FK, Du ZY, Ma YL, et al. Mass absorption efficiency of elemental carbon and water-soluble organic carbon in Beijing, China. Atmospheric Chemistry and Physics. 2011 Nov 28;11(22):11497–510.
Cheng, Y., et al. “Mass absorption efficiency of elemental carbon and water-soluble organic carbon in Beijing, China.” Atmospheric Chemistry and Physics, vol. 11, no. 22, Nov. 2011, pp. 11497–510. Scopus, doi:10.5194/acp-11-11497-2011.
Cheng Y, He KB, Zheng M, Duan FK, Du ZY, Ma YL, Tan JH, Yang FM, Liu JM, Zhang XL, Weber RJ, Bergin MH, Russell AG. Mass absorption efficiency of elemental carbon and water-soluble organic carbon in Beijing, China. Atmospheric Chemistry and Physics. 2011 Nov 28;11(22):11497–11510.

Published In

Atmospheric Chemistry and Physics

DOI

EISSN

1680-7324

ISSN

1680-7316

Publication Date

November 28, 2011

Volume

11

Issue

22

Start / End Page

11497 / 11510

Related Subject Headings

  • Meteorology & Atmospheric Sciences
  • 3702 Climate change science
  • 3701 Atmospheric sciences
  • 0401 Atmospheric Sciences
  • 0201 Astronomical and Space Sciences