Structural Characterization of the Nanocolumnar Microstructure of InAlN
© 2015 The Minerals, Metals & Materials Society In x Al (1−x) N (InAlN) thin films, lattice-matched to GaN with an In composition of ∼17%, are of interest for GaN-based devices. However, InAlN thin films grown by molecular beam epitaxy exhibit a characteristic lateral composition modulation, or nanocolumnar microstructure, with an Al-rich center region and an In-rich boundary. The mechanism driving the formation of this microstructure remains unknown. To date, the structural characterization of the nanocolumn domain size and its associated compositional variation is challenging, requiring either transmission electron microscopy or atomic probe microscopy. We show that the nanocolumnar microstructure can be characterized using x-ray diffraction and is associated with increased diffuse scattering. Using this technique, we show that the development of the microstructure is dependent on growth temperature.
Duke Scholars
Published In
DOI
ISSN
Publication Date
Related Subject Headings
- Applied Physics
- 51 Physical sciences
- 40 Engineering
- 34 Chemical sciences
- 1099 Other Technology
- 0906 Electrical and Electronic Engineering
- 0202 Atomic, Molecular, Nuclear, Particle and Plasma Physics
Citation
Published In
DOI
ISSN
Publication Date
Related Subject Headings
- Applied Physics
- 51 Physical sciences
- 40 Engineering
- 34 Chemical sciences
- 1099 Other Technology
- 0906 Electrical and Electronic Engineering
- 0202 Atomic, Molecular, Nuclear, Particle and Plasma Physics