Skip to main content
Journal cover image

Cell membrane deformation and bioeffects produced by tandem bubble-induced jetting flow.

Publication ,  Journal Article
Yuan, F; Yang, C; Zhong, P
Published in: Proceedings of the National Academy of Sciences of the United States of America
December 2015

Cavitation with bubble-bubble interaction is a fundamental feature in therapeutic ultrasound. However, the causal relationships between bubble dynamics, associated flow motion, cell deformation, and resultant bioeffects are not well elucidated. Here, we report an experimental system for tandem bubble (TB; maximum diameter = 50 ± 2 μm) generation, jet formation, and subsequent interaction with single HeLa cells patterned on fibronectin-coated islands (32 × 32 μm) in a microfluidic chip. We have demonstrated that pinpoint membrane poration can be produced at the leading edge of the HeLa cell in standoff distance Sd ≤ 30 μm, driven by the transient shear stress associated with TB-induced jetting flow. The cell membrane deformation associated with a maximum strain rate on the order of 10(4) s(-1) was heterogeneous. The maximum area strain ([Formula: see text]) decreased exponentially with Sd (also influenced by adhesion pattern), a feature that allows us to create distinctly different treatment outcome (i.e., necrosis, repairable poration, or nonporation) in individual cells. More importantly, our results suggest that membrane poration and cell survival are better correlated with area strain integral ([Formula: see text]) instead of [Formula: see text], which is characteristic of the response of materials under high strain-rate loadings. For 50% cell survival the corresponding area strain integral was found to vary in the range of 56 ∼ 123 μs with [Formula: see text] in the range of 57 ∼ 87%. Finally, significant variations in individual cell's response were observed at the same Sd, indicating the potential for using this method to probe mechanotransduction at the single cell level.

Duke Scholars

Altmetric Attention Stats
Dimensions Citation Stats

Published In

Proceedings of the National Academy of Sciences of the United States of America

DOI

EISSN

1091-6490

ISSN

0027-8424

Publication Date

December 2015

Volume

112

Issue

51

Start / End Page

E7039 / E7047

Related Subject Headings

  • Ultrasonics
  • Single-Cell Analysis
  • Microfluidics
  • Lab-On-A-Chip Devices
  • Humans
  • Hela Cells
  • HeLa Cells
  • Cell Membrane
  • Biophysical Phenomena
 

Citation

APA
Chicago
ICMJE
MLA
NLM
Yuan, F., Yang, C., & Zhong, P. (2015). Cell membrane deformation and bioeffects produced by tandem bubble-induced jetting flow. Proceedings of the National Academy of Sciences of the United States of America, 112(51), E7039–E7047. https://doi.org/10.1073/pnas.1518679112
Yuan, Fang, Chen Yang, and Pei Zhong. “Cell membrane deformation and bioeffects produced by tandem bubble-induced jetting flow.Proceedings of the National Academy of Sciences of the United States of America 112, no. 51 (December 2015): E7039–47. https://doi.org/10.1073/pnas.1518679112.
Yuan F, Yang C, Zhong P. Cell membrane deformation and bioeffects produced by tandem bubble-induced jetting flow. Proceedings of the National Academy of Sciences of the United States of America. 2015 Dec;112(51):E7039–47.
Yuan, Fang, et al. “Cell membrane deformation and bioeffects produced by tandem bubble-induced jetting flow.Proceedings of the National Academy of Sciences of the United States of America, vol. 112, no. 51, Dec. 2015, pp. E7039–47. Epmc, doi:10.1073/pnas.1518679112.
Yuan F, Yang C, Zhong P. Cell membrane deformation and bioeffects produced by tandem bubble-induced jetting flow. Proceedings of the National Academy of Sciences of the United States of America. 2015 Dec;112(51):E7039–E7047.
Journal cover image

Published In

Proceedings of the National Academy of Sciences of the United States of America

DOI

EISSN

1091-6490

ISSN

0027-8424

Publication Date

December 2015

Volume

112

Issue

51

Start / End Page

E7039 / E7047

Related Subject Headings

  • Ultrasonics
  • Single-Cell Analysis
  • Microfluidics
  • Lab-On-A-Chip Devices
  • Humans
  • Hela Cells
  • HeLa Cells
  • Cell Membrane
  • Biophysical Phenomena