Skip to main content
Journal cover image
Bayesian Inference for Gene Expression and Proteomics

Nonparametric Models for Proteomic Peak Identification and Quantification

Publication ,  Chapter
Clyde, M; House, L; Wolpert, RL
2006

We present model-based inference for proteomic peak identification and quantification from mass spectroscopy data, focusing on nonparametric Bayesian models. Using experimental data generated from MALDI-TOF mass spectroscopy (matrix-assisted laser desorption ionization time-of-flight) we model observed intensities in spectra with a hierarchical nonparametric model for expected intensity as a function of time-of-flight. We express the unknown intensity function as a sum of kernel functions, a natural choice of basis functions for modeling spectral peaks. We discuss how to place prior distributions on the unknown functions using Lévy random fields and describe posterior inference via a reversible jump Markov chain Monte Carlo algorithm.

Duke Scholars

DOI

ISBN

9780511584589

Publication Date

2006

Start / End Page

293 / 308

Publisher

Cambridge University Press
 

Citation

APA
Chicago
ICMJE
MLA
NLM
Clyde, M., House, L., & Wolpert, R. L. (2006). Nonparametric Models for Proteomic Peak Identification and Quantification. In K. A. Do, P. Muller, & M. Vannucci (Eds.), Bayesian Inference for Gene Expression and Proteomics (pp. 293–308). Cambridge University Press. https://doi.org/10.1017/CBO9780511584589.016
Clyde, M., L. House, and R. L. Wolpert. “Nonparametric Models for Proteomic Peak Identification and Quantification.” In Bayesian Inference for Gene Expression and Proteomics, edited by K. A. Do, P. Muller, and M. Vannucci, 293–308. Cambridge University Press, 2006. https://doi.org/10.1017/CBO9780511584589.016.
Clyde M, House L, Wolpert RL. Nonparametric Models for Proteomic Peak Identification and Quantification. In: Do KA, Muller P, Vannucci M, editors. Bayesian Inference for Gene Expression and Proteomics. Cambridge University Press; 2006. p. 293–308.
Clyde, M., et al. “Nonparametric Models for Proteomic Peak Identification and Quantification.” Bayesian Inference for Gene Expression and Proteomics, edited by K. A. Do et al., Cambridge University Press, 2006, pp. 293–308. Manual, doi:10.1017/CBO9780511584589.016.
Clyde M, House L, Wolpert RL. Nonparametric Models for Proteomic Peak Identification and Quantification. In: Do KA, Muller P, Vannucci M, editors. Bayesian Inference for Gene Expression and Proteomics. Cambridge University Press; 2006. p. 293–308.
Journal cover image

DOI

ISBN

9780511584589

Publication Date

2006

Start / End Page

293 / 308

Publisher

Cambridge University Press