Modeling non-harmonic behavior of materials from experimental inelastic neutron scattering and thermal expansion measurements.
Based on thermodynamic principles, we derive expressions quantifying the non-harmonic vibrational behavior of materials, which are rigorous yet easily evaluated from experimentally available data for the thermal expansion coefficient and the phonon density of states. These experimentally-derived quantities are valuable to benchmark first-principles theoretical predictions of harmonic and non-harmonic thermal behaviors using perturbation theory, ab initio molecular-dynamics, or Monte-Carlo simulations. We illustrate this analysis by computing the harmonic, dilational, and anharmonic contributions to the entropy, internal energy, and free energy of elemental aluminum and the ordered compound [Formula: see text] over a wide range of temperature. Results agree well with previous data in the literature and provide an efficient approach to estimate anharmonic effects in materials.
Duke Scholars
Altmetric Attention Stats
Dimensions Citation Stats
Published In
DOI
EISSN
ISSN
Publication Date
Volume
Issue
Start / End Page
Related Subject Headings
- Fluids & Plasmas
- 5104 Condensed matter physics
- 4018 Nanotechnology
- 4016 Materials engineering
- 1007 Nanotechnology
- 0912 Materials Engineering
- 0204 Condensed Matter Physics
Citation
Published In
DOI
EISSN
ISSN
Publication Date
Volume
Issue
Start / End Page
Related Subject Headings
- Fluids & Plasmas
- 5104 Condensed matter physics
- 4018 Nanotechnology
- 4016 Materials engineering
- 1007 Nanotechnology
- 0912 Materials Engineering
- 0204 Condensed Matter Physics