Skip to main content

Using queuing models to aid design and guide research effort for multimodality buried target detection systems

Publication ,  Conference
Malof, JM; Collins, LM
Published in: Proceedings of SPIE - The International Society for Optical Engineering
January 1, 2016

Many remote sensing modalities have been developed for buried target detection (BTD), each one offering relative advantages over the others. There has been interest in combining several modalities into a single BTD system that benefits from the advantages of each constituent sensor. Recently an approach was developed, called multi-state management (MSM), that aims to achieve this goal by separating BTD system operation into discrete states, each with different sensor activity and system velocity. Additionally, a modeling approach, called Q-MSM, was developed to quickly analyze multi-modality BTD systems operating with MSM. This work extends previous work by demonstrating how Q-MSM modeling can be used to design BTD systems operating with MSM, and to guide research to yield the most performance benefits. In this work an MSM system is considered that combines a forward-looking infrared (FLIR) camera and a ground penetrating radar (GPR). Experiments are conducted using a dataset of real, field-collected, data which demonstrates how the Q-MSM model can be used to evaluate performance benefits of altering, or improving via research investment, various characteristics of the GPR and FLIR systems. Q-MSM permits fast analysis that can determine where system improvements will have the greatest impact, and can therefore help guide BTD research.

Duke Scholars

Published In

Proceedings of SPIE - The International Society for Optical Engineering

DOI

EISSN

1996-756X

ISSN

0277-786X

ISBN

9781510600645

Publication Date

January 1, 2016

Volume

9823

Related Subject Headings

  • 5102 Atomic, molecular and optical physics
  • 4009 Electronics, sensors and digital hardware
  • 4006 Communications engineering
 

Citation

APA
Chicago
ICMJE
MLA
NLM
Malof, J. M., & Collins, L. M. (2016). Using queuing models to aid design and guide research effort for multimodality buried target detection systems. In Proceedings of SPIE - The International Society for Optical Engineering (Vol. 9823). https://doi.org/10.1117/12.2224131
Malof, J. M., and L. M. Collins. “Using queuing models to aid design and guide research effort for multimodality buried target detection systems.” In Proceedings of SPIE - The International Society for Optical Engineering, Vol. 9823, 2016. https://doi.org/10.1117/12.2224131.
Malof JM, Collins LM. Using queuing models to aid design and guide research effort for multimodality buried target detection systems. In: Proceedings of SPIE - The International Society for Optical Engineering. 2016.
Malof, J. M., and L. M. Collins. “Using queuing models to aid design and guide research effort for multimodality buried target detection systems.” Proceedings of SPIE - The International Society for Optical Engineering, vol. 9823, 2016. Scopus, doi:10.1117/12.2224131.
Malof JM, Collins LM. Using queuing models to aid design and guide research effort for multimodality buried target detection systems. Proceedings of SPIE - The International Society for Optical Engineering. 2016.

Published In

Proceedings of SPIE - The International Society for Optical Engineering

DOI

EISSN

1996-756X

ISSN

0277-786X

ISBN

9781510600645

Publication Date

January 1, 2016

Volume

9823

Related Subject Headings

  • 5102 Atomic, molecular and optical physics
  • 4009 Electronics, sensors and digital hardware
  • 4006 Communications engineering