Skip to main content

A Microfluidic System with Surface Patterning for Investigating Cavitation Bubble(s)-Cell Interaction and the Resultant Bioeffects at the Single-cell Level.

Publication ,  Journal Article
Li, F; Yuan, F; Sankin, G; Yang, C; Zhong, P
Published in: Journal of visualized experiments : JoVE
January 2017

In this manuscript, we first describe the fabrication protocol of a microfluidic chip, with gold dots and fibronectin-coated regions on the same glass substrate, that precisely controls the generation of tandem bubbles and individual cells patterned nearby with well-defined locations and shapes. We then demonstrate the generation of tandem bubbles by using two pulsed lasers illuminating a pair of gold dots with a few-microsecond time delay. We visualize the bubble-bubble interaction and jet formation by high-speed imaging and characterize the resultant flow field using particle image velocimetry (PIV). Finally, we present some applications of this technique for single cell analysis, including cell membrane poration with macromolecule uptake, localized membrane deformation determined by the displacements of attached integrin-binding beads, and intracellular calcium response from ratiometric imaging. Our results show that a fast and directional jetting flow is produced by the tandem bubble interaction, which can impose a highly localized shear stress on the surface of a cell grown in close proximity. Furthermore, different bioeffects can be induced by altering the strength of the jetting flow by adjusting the standoff distance from the cell to the tandem bubbles.

Duke Scholars

Altmetric Attention Stats
Dimensions Citation Stats

Published In

Journal of visualized experiments : JoVE

DOI

EISSN

1940-087X

ISSN

1940-087X

Publication Date

January 2017

Issue

119

Related Subject Headings

  • Single-Cell Analysis
  • Rheology
  • Microfluidics
  • Lasers
  • Humans
  • Hela Cells
  • HeLa Cells
  • Cell Membrane
  • Cell Communication
  • 3101 Biochemistry and cell biology
 

Citation

APA
Chicago
ICMJE
MLA
NLM
Li, F., Yuan, F., Sankin, G., Yang, C., & Zhong, P. (2017). A Microfluidic System with Surface Patterning for Investigating Cavitation Bubble(s)-Cell Interaction and the Resultant Bioeffects at the Single-cell Level. Journal of Visualized Experiments : JoVE, (119). https://doi.org/10.3791/55106
Li, Fenfang, Fang Yuan, Georgy Sankin, Chen Yang, and Pei Zhong. “A Microfluidic System with Surface Patterning for Investigating Cavitation Bubble(s)-Cell Interaction and the Resultant Bioeffects at the Single-cell Level.Journal of Visualized Experiments : JoVE, no. 119 (January 2017). https://doi.org/10.3791/55106.
Li, Fenfang, et al. “A Microfluidic System with Surface Patterning for Investigating Cavitation Bubble(s)-Cell Interaction and the Resultant Bioeffects at the Single-cell Level.Journal of Visualized Experiments : JoVE, no. 119, Jan. 2017. Epmc, doi:10.3791/55106.

Published In

Journal of visualized experiments : JoVE

DOI

EISSN

1940-087X

ISSN

1940-087X

Publication Date

January 2017

Issue

119

Related Subject Headings

  • Single-Cell Analysis
  • Rheology
  • Microfluidics
  • Lasers
  • Humans
  • Hela Cells
  • HeLa Cells
  • Cell Membrane
  • Cell Communication
  • 3101 Biochemistry and cell biology