A novel image encryption scheme based on DNA sequence operations and chaotic systems
In the paper, a novel image encryption algorithm based on DNA sequence operations and chaotic systems is proposed. The encryption architecture of permutation and diffusion is adopted. Firstly, 256-bit hash value of the plain image is gotten to calculate the initial values and system parameters of the 2D Logistic-adjusted-Sine map (2D-LASM) and a new 1D chaotic system; thus, the encryption scheme highly depends on the original image. Next, the chaotic sequences from 2D-LASM are used to produce the DNA encoding/decoding rule matrix, and the plain image is encoded into a DNA matrix according to it. Thirdly, DNA level row permutation and column permutation are performed on the DNA matrix of the original image, inter-DNA-plane permutation and intra-DNA-plane permutation can be attained simultaneously, and then, DNA XOR operation is performed on the permutated DNA matrix using a DNA key matrix, and the key matrix is produced by the combination of two 1D chaotic systems. Finally, after decoding the confused DNA matrix, the cipher image is obtained. Experimental results and security analyses demonstrate that the proposed scheme not only has good encryption effect, but also is secure enough to resist against the known attacks.
Duke Scholars
Published In
DOI
ISSN
Publication Date
Volume
Issue
Start / End Page
Related Subject Headings
- Artificial Intelligence & Image Processing
- 4611 Machine learning
- 4603 Computer vision and multimedia computation
- 4602 Artificial intelligence
- 1702 Cognitive Sciences
- 0906 Electrical and Electronic Engineering
- 0801 Artificial Intelligence and Image Processing
Citation
Published In
DOI
ISSN
Publication Date
Volume
Issue
Start / End Page
Related Subject Headings
- Artificial Intelligence & Image Processing
- 4611 Machine learning
- 4603 Computer vision and multimedia computation
- 4602 Artificial intelligence
- 1702 Cognitive Sciences
- 0906 Electrical and Electronic Engineering
- 0801 Artificial Intelligence and Image Processing