Skip to main content
Journal cover image

Deficiencies in mitochondrial dynamics sensitize Caenorhabditis elegans to arsenite and other mitochondrial toxicants by reducing mitochondrial adaptability.

Publication ,  Journal Article
Luz, AL; Godebo, TR; Smith, LL; Leuthner, TC; Maurer, LL; Meyer, JN
Published in: Toxicology
July 2017

Mitochondrial fission, fusion, and mitophagy are interlinked processes that regulate mitochondrial shape, number, and size, as well as metabolic activity and stress response. The fundamental importance of these processes is evident in the fact that mutations in fission (DRP1), fusion (MFN2, OPA1), and mitophagy (PINK1, PARK2) genes can cause human disease (collectively >1/10,000). Interestingly, however, the age of onset and severity of clinical manifestations varies greatly between patients with these diseases (even those harboring identical mutations), suggesting a role for environmental factors in the development and progression of certain mitochondrial diseases. Using the model organism Caenorhabditis elegans, we screened ten mitochondrial toxicants (2, 4-dinitrophenol, acetaldehyde, acrolein, aflatoxin B1, arsenite, cadmium, cisplatin, doxycycline, paraquat, rotenone) for increased or decreased toxicity in fusion (fzo-1, eat-3)-, fission (drp-1)-, and mitophagy (pdr-1, pink-1)-deficient nematodes using a larval growth assay. In general, fusion-deficient nematodes were the most sensitive to toxicants, including aflatoxin B1, arsenite, cisplatin, paraquat, and rotenone. Because arsenite was particularly potent in fission- and fusion-deficient nematodes, and hundreds of millions of people are chronically exposed to arsenic, we investigated the effects of these genetic deficiencies on arsenic toxicity in more depth. We found that deficiencies in fission and fusion sensitized nematodes to arsenite-induced lethality throughout aging. Furthermore, low-dose arsenite, which acted in a "mitohormetic" fashion by increasing mitochondrial function (in particular, basal and maximal oxygen consumption) in wild-type nematodes by a wide range of measures, exacerbated mitochondrial dysfunction in fusion-deficient nematodes. Analysis of multiple mechanistic changes suggested that disruption of pyruvate metabolism and Krebs cycle activity underlie the observed arsenite-induced mitochondrial deficits, and these disruptions are exacerbated in the absence of mitochondrial fusion. This research demonstrates the importance of mitochondrial dynamics in limiting arsenite toxicity by permitting mitochondrial adaptability. It also suggests that individuals suffering from deficiencies in mitodynamic processes may be more susceptible to the mitochondrial toxicity of arsenic and other toxicants.

Duke Scholars

Altmetric Attention Stats
Dimensions Citation Stats

Published In

Toxicology

DOI

EISSN

1879-3185

ISSN

0300-483X

Publication Date

July 2017

Volume

387

Start / End Page

81 / 94

Related Subject Headings

  • Ubiquitin-Protein Ligases
  • Toxicology
  • Sodium Compounds
  • Protein Serine-Threonine Kinases
  • Phenotype
  • Mitophagy
  • Mitochondrial Dynamics
  • Mitochondria
  • Larva
  • Genotype
 

Citation

APA
Chicago
ICMJE
MLA
NLM
Luz, A. L., Godebo, T. R., Smith, L. L., Leuthner, T. C., Maurer, L. L., & Meyer, J. N. (2017). Deficiencies in mitochondrial dynamics sensitize Caenorhabditis elegans to arsenite and other mitochondrial toxicants by reducing mitochondrial adaptability. Toxicology, 387, 81–94. https://doi.org/10.1016/j.tox.2017.05.018
Luz, Anthony L., Tewodros R. Godebo, Latasha L. Smith, Tess C. Leuthner, Laura L. Maurer, and Joel N. Meyer. “Deficiencies in mitochondrial dynamics sensitize Caenorhabditis elegans to arsenite and other mitochondrial toxicants by reducing mitochondrial adaptability.Toxicology 387 (July 2017): 81–94. https://doi.org/10.1016/j.tox.2017.05.018.
Luz, Anthony L., et al. “Deficiencies in mitochondrial dynamics sensitize Caenorhabditis elegans to arsenite and other mitochondrial toxicants by reducing mitochondrial adaptability.Toxicology, vol. 387, July 2017, pp. 81–94. Epmc, doi:10.1016/j.tox.2017.05.018.
Journal cover image

Published In

Toxicology

DOI

EISSN

1879-3185

ISSN

0300-483X

Publication Date

July 2017

Volume

387

Start / End Page

81 / 94

Related Subject Headings

  • Ubiquitin-Protein Ligases
  • Toxicology
  • Sodium Compounds
  • Protein Serine-Threonine Kinases
  • Phenotype
  • Mitophagy
  • Mitochondrial Dynamics
  • Mitochondria
  • Larva
  • Genotype