Skip to main content

Derivation of chondrogenically-committed cells from human embryonic cells for cartilage tissue regeneration.

Publication ,  Journal Article
Hwang, NS; Varghese, S; Elisseeff, J
Published in: PLoS One
June 25, 2008

BACKGROUND: Heterogeneous and uncontrolled differentiation of human embryonic stem cells (hESCs) in embryoid bodies (EBs) limits the potential use of hESCs for cell-based therapies. More efficient strategies are needed for the commitment and differentiation of hESCs to produce a homogeneous population of specific cell types for tissue regeneration applications. METHODOLOGY/PRINCIPAL FINDINGS: We report here that significant chondrocytic commitment of feeder-free cultured human embryonic stem cells (FF-hESCs), as determined by gene expression and immunostaining analysis, was induced by co-culture with primary chondrocytes. Furthermore, a dynamic expression profile of chondrocyte-specific genes was observed during monolayer expansion of the chondrogenically-committed cells. Chondrogenically-committed cells synergistically responded to transforming growth factor-beta1 (TGF-beta1) and beta1-integrin activating antibody by increasing tissue mass in pellet culture. In addition, when encapsulated in hydrogels, these cells formed cartilage tissue both in vitro and in vivo. In contrast, the absence of chondrocyte co-culture did not result in an expandable cell population from FF-hESCs. CONCLUSIONS/SIGNIFICANCE: The direct chondrocytic commitment of FF-hESCs can be induced by morphogenetic factors from chondrocytes without EB formation and homogenous cartilage tissue can be formed in vitro and in vivo.

Duke Scholars

Altmetric Attention Stats
Dimensions Citation Stats

Published In

PLoS One

DOI

EISSN

1932-6203

Publication Date

June 25, 2008

Volume

3

Issue

6

Start / End Page

e2498

Location

United States

Related Subject Headings

  • Transforming Growth Factor beta1
  • Reverse Transcriptase Polymerase Chain Reaction
  • Regeneration
  • Mice, Nude
  • Mice
  • Integrin beta1
  • Immunohistochemistry
  • Hydrogels
  • Humans
  • General Science & Technology
 

Citation

APA
Chicago
ICMJE
MLA
NLM
Hwang, N. S., Varghese, S., & Elisseeff, J. (2008). Derivation of chondrogenically-committed cells from human embryonic cells for cartilage tissue regeneration. PLoS One, 3(6), e2498. https://doi.org/10.1371/journal.pone.0002498
Hwang, Nathaniel S., Shyni Varghese, and Jennifer Elisseeff. “Derivation of chondrogenically-committed cells from human embryonic cells for cartilage tissue regeneration.PLoS One 3, no. 6 (June 25, 2008): e2498. https://doi.org/10.1371/journal.pone.0002498.
Hwang, Nathaniel S., et al. “Derivation of chondrogenically-committed cells from human embryonic cells for cartilage tissue regeneration.PLoS One, vol. 3, no. 6, June 2008, p. e2498. Pubmed, doi:10.1371/journal.pone.0002498.

Published In

PLoS One

DOI

EISSN

1932-6203

Publication Date

June 25, 2008

Volume

3

Issue

6

Start / End Page

e2498

Location

United States

Related Subject Headings

  • Transforming Growth Factor beta1
  • Reverse Transcriptase Polymerase Chain Reaction
  • Regeneration
  • Mice, Nude
  • Mice
  • Integrin beta1
  • Immunohistochemistry
  • Hydrogels
  • Humans
  • General Science & Technology