Memristive radial basis function neural network for parameters adjustment of PID controller
Radial basis function (RBF) based-identification proportional– integral–derivative (PID) can automatically adjust the parameters of PID controller with strong self-organization, self-learning and self-adaptive ability. However, the compound controller has complex weight updating algorithm and large calculation. Memristor, applied well to the investigation of storage circuit and artificial intelligence, is a nonlinear element with memory function. Thus, it can be introduced to RBF neural network as electronic synapse to save and update the synaptic weights. This paper builds a model of memristive RBF-PID (MRBF-PID), and proposes the updating algorithm of weight upon memristance. The proposed MRBF-PID is used for the control of a nonlinear system. Its controlling effect is showed by numerical simulation experiment.
Duke Scholars
Published In
DOI
EISSN
ISSN
Publication Date
Volume
Start / End Page
Related Subject Headings
- Artificial Intelligence & Image Processing
- 46 Information and computing sciences
Citation
Published In
DOI
EISSN
ISSN
Publication Date
Volume
Start / End Page
Related Subject Headings
- Artificial Intelligence & Image Processing
- 46 Information and computing sciences