Impact of process variations on emerging memristor
The memristor, known as the fourth basic two-terminal circuit element, has attracted many research interests since the first real device was developed by HP labs in 2008. The nano-scale memristive device has the potential to construct some novel computing systems because of its distinctive characters, such as non-volatility, non-linearity, low-power, and good scalability. These electrical characteristics of memristors are mainly determined by the material characteristic and the fabrication process. For example, process variations may cause the deviation of the actual electrical behavior of memristors from the original design and result in the malfunction of the device. Therefore, it is very important to understand and characterize the impact of process variations on the electrical behaviors of the memristor and its implication to the circuit design. In this paper, we analyze the impact of the geometry variations on the electrical characteristics of the memristor. Two parameters - NARD (Normalized Accumulative Resistance Deviation) and NAARD (Normalized Accumulative Absolute Resistance Deviation), are introduced to measure the fluctuation of the overall internal state (or the resistance) of a memristor under the impact of process variations. Based on our analysis, Monte-Carlo simulations are conducted to evaluate the device mismatch effects in the memristor-based memory. Copyright 2010 ACM.