Skip to main content

Explicit symmetric pseudo-random matrices

Publication ,  Conference
Soloveychik, I; Xiang, Y; Tarokh, V
Published in: IEEE International Symposium on Information Theory - Proceedings
July 2, 2017

We consider the problem of generating symmetric pseudo-random sign (±1) matrices based on the similarity of their spectra to Wigner's semicircular law. Using binary m-sequences (Golomb sequences) of lengths n = 2m - 1, we give a simple explicit construction of circulant n × n sign matrices and show that their spectra converge to the semicircular law when n grows. The Kolmogorov complexity of the proposed matrices equals to that of Golomb sequences and is at most 2log2(n) bits.

Duke Scholars

Published In

IEEE International Symposium on Information Theory - Proceedings

DOI

ISSN

2157-8095

Publication Date

July 2, 2017

Volume

2018-January

Start / End Page

424 / 428
 

Citation

APA
Chicago
ICMJE
MLA
NLM
Soloveychik, I., Xiang, Y., & Tarokh, V. (2017). Explicit symmetric pseudo-random matrices. In IEEE International Symposium on Information Theory - Proceedings (Vol. 2018-January, pp. 424–428). https://doi.org/10.1109/ITW.2017.8277999
Soloveychik, I., Y. Xiang, and V. Tarokh. “Explicit symmetric pseudo-random matrices.” In IEEE International Symposium on Information Theory - Proceedings, 2018-January:424–28, 2017. https://doi.org/10.1109/ITW.2017.8277999.
Soloveychik I, Xiang Y, Tarokh V. Explicit symmetric pseudo-random matrices. In: IEEE International Symposium on Information Theory - Proceedings. 2017. p. 424–8.
Soloveychik, I., et al. “Explicit symmetric pseudo-random matrices.” IEEE International Symposium on Information Theory - Proceedings, vol. 2018-January, 2017, pp. 424–28. Scopus, doi:10.1109/ITW.2017.8277999.
Soloveychik I, Xiang Y, Tarokh V. Explicit symmetric pseudo-random matrices. IEEE International Symposium on Information Theory - Proceedings. 2017. p. 424–428.

Published In

IEEE International Symposium on Information Theory - Proceedings

DOI

ISSN

2157-8095

Publication Date

July 2, 2017

Volume

2018-January

Start / End Page

424 / 428