Skip to main content

Explicit symmetric pseudo-random matrices

Publication ,  Conference
Soloveychik, I; Xiang, Y; Tarokh, V
Published in: IEEE International Symposium on Information Theory Proceedings
July 2, 2017

We consider the problem of generating symmetric pseudo-random sign (±1) matrices based on the similarity of their spectra to Wigner's semicircular law. Using binary m-sequences (Golomb sequences) of lengths n = 2m - 1, we give a simple explicit construction of circulant n × n sign matrices and show that their spectra converge to the semicircular law when n grows. The Kolmogorov complexity of the proposed matrices equals to that of Golomb sequences and is at most 2log2(n) bits.

Duke Scholars

Published In

IEEE International Symposium on Information Theory Proceedings

DOI

ISSN

2157-8095

Publication Date

July 2, 2017

Volume

2018-January

Start / End Page

424 / 428
 

Citation

APA
Chicago
ICMJE
MLA
NLM
Soloveychik, I., Xiang, Y., & Tarokh, V. (2017). Explicit symmetric pseudo-random matrices. In IEEE International Symposium on Information Theory Proceedings (Vol. 2018-January, pp. 424–428). https://doi.org/10.1109/ITW.2017.8277999
Soloveychik, I., Y. Xiang, and V. Tarokh. “Explicit symmetric pseudo-random matrices.” In IEEE International Symposium on Information Theory Proceedings, 2018-January:424–28, 2017. https://doi.org/10.1109/ITW.2017.8277999.
Soloveychik I, Xiang Y, Tarokh V. Explicit symmetric pseudo-random matrices. In: IEEE International Symposium on Information Theory Proceedings. 2017. p. 424–8.
Soloveychik, I., et al. “Explicit symmetric pseudo-random matrices.” IEEE International Symposium on Information Theory Proceedings, vol. 2018-January, 2017, pp. 424–28. Scopus, doi:10.1109/ITW.2017.8277999.
Soloveychik I, Xiang Y, Tarokh V. Explicit symmetric pseudo-random matrices. IEEE International Symposium on Information Theory Proceedings. 2017. p. 424–428.

Published In

IEEE International Symposium on Information Theory Proceedings

DOI

ISSN

2157-8095

Publication Date

July 2, 2017

Volume

2018-January

Start / End Page

424 / 428