Skip to main content

Security of cyber-physical systems in the presence of transient sensor faults

Publication ,  Journal Article
Park, J; Ivanov, R; Weimer, J; Pajic, M; Son, SH; Lee, I
Published in: ACM Transactions on Cyber-Physical Systems
January 1, 2017

This article is concerned with the security of modern Cyber-Physical Systems in the presence of transient sensor faults.We consider a system with multiple sensors measuring the same physical variable, where each sensor provides an interval with all possible values of the true state.We note that some sensors might output faulty readings and others may be controlled by a malicious attacker. Differing from previous works, in this article, we aim to distinguish between faults and attacks and develop an attack detection algorithm for the latter only. To do this, we note that there are two kinds of faults-transient and permanent; the former are benign and short-lived, whereas the latter may have dangerous consequences on system performance. We argue that sensors have an underlying transient fault model that quantifies the amount of time in which transient faults can occur. In addition, we provide a framework for developing such a model if it is not provided by manufacturers. Attacks can manifest as either transient or permanent faults depending on the attacker's goal.We provide different techniques for handling each kind. For the former, we analyze the worst-case performance of sensor fusion over time given each sensor's transient fault model and develop a filtered fusion interval that is guaranteed to contain the true value and is bounded in size. To deal with attacks that do not comply with sensors' transient fault models, we propose a sound attack detection algorithm based on pairwise inconsistencies between sensor measurements. Finally, we provide a real-data case study on an unmanned ground vehicle to evaluate the various aspects of this article.

Duke Scholars

Published In

ACM Transactions on Cyber-Physical Systems

DOI

EISSN

2378-9638

ISSN

2378-962X

Publication Date

January 1, 2017

Volume

1

Issue

3
 

Citation

APA
Chicago
ICMJE
MLA
NLM
Park, J., Ivanov, R., Weimer, J., Pajic, M., Son, S. H., & Lee, I. (2017). Security of cyber-physical systems in the presence of transient sensor faults. ACM Transactions on Cyber-Physical Systems, 1(3). https://doi.org/10.1145/3064809
Park, J., R. Ivanov, J. Weimer, M. Pajic, S. H. Son, and I. Lee. “Security of cyber-physical systems in the presence of transient sensor faults.” ACM Transactions on Cyber-Physical Systems 1, no. 3 (January 1, 2017). https://doi.org/10.1145/3064809.
Park J, Ivanov R, Weimer J, Pajic M, Son SH, Lee I. Security of cyber-physical systems in the presence of transient sensor faults. ACM Transactions on Cyber-Physical Systems. 2017 Jan 1;1(3).
Park, J., et al. “Security of cyber-physical systems in the presence of transient sensor faults.” ACM Transactions on Cyber-Physical Systems, vol. 1, no. 3, Jan. 2017. Scopus, doi:10.1145/3064809.
Park J, Ivanov R, Weimer J, Pajic M, Son SH, Lee I. Security of cyber-physical systems in the presence of transient sensor faults. ACM Transactions on Cyber-Physical Systems. 2017 Jan 1;1(3).

Published In

ACM Transactions on Cyber-Physical Systems

DOI

EISSN

2378-9638

ISSN

2378-962X

Publication Date

January 1, 2017

Volume

1

Issue

3