An experimentally-calibrated damage mechanics model for stone fracture in shock wave lithotripsy.
A damage model suggested by the Tuler-Butcher concept of dynamic accumulation of microscopic defects is obtained from experimental data on microcrack formation in synthetic kidney stones. Experimental data on appearance of microcracks is extracted from micro-computed tomography images of BegoStone simulants obtained after subjecting the stone to successive pulses produced by an electromagnetic shock-wave lithotripter source. Image processing of the data is used to infer statistical distributions of crack length and width in representative transversal cross-sections of a cylindrical stone. A high-resolution finite volume computational model, capable of accurately modeling internal reflections due to local changes in material properties produced by material damage is used to simulate the accumulation of damage due to successive shocks. Comparison of statistical distributions of microcrack formation in computation and experiment allows calibration of the damage model. The model is subsequently used to compute fracture of a different aspect-ratio cylindrical stone predicting concurrent formation of two main fracture areas as observed experimentally.
Duke Scholars
Published In
DOI
EISSN
ISSN
Publication Date
Volume
Issue
Start / End Page
Related Subject Headings
- Mechanical Engineering & Transports
- 4017 Mechanical engineering
- 4016 Materials engineering
- 4005 Civil engineering
- 0913 Mechanical Engineering
- 0912 Materials Engineering
- 0905 Civil Engineering
Citation
Published In
DOI
EISSN
ISSN
Publication Date
Volume
Issue
Start / End Page
Related Subject Headings
- Mechanical Engineering & Transports
- 4017 Mechanical engineering
- 4016 Materials engineering
- 4005 Civil engineering
- 0913 Mechanical Engineering
- 0912 Materials Engineering
- 0905 Civil Engineering