Dynamics around the site percolation threshold on high-dimensional hypercubic lattices.
Recent advances on the glass problem motivate reexamining classical models of percolation. Here we consider the displacement of an ant in a labyrinth near the percolation threshold on cubic lattices both below and above the upper critical dimension of simple percolation, d_{u}=6. Using theory and simulations, we consider the scaling regime and obtain that both caging and subdiffusion scale logarithmically for d≥d_{u}. The theoretical derivation, which considers Bethe lattices with generalized connectivity and a random graph model, confirms that logarithmic scalings should persist in the limit d→∞. The computational validation employs accelerated random walk simulations with a transfer-matrix description of diffusion to evaluate directly the dynamical critical exponents below d_{u} as well as their logarithmic scaling above d_{u}. Our numerical results improve various earlier estimates and are fully consistent with our theoretical predictions.
Duke Scholars
Published In
DOI
EISSN
ISSN
Publication Date
Volume
Issue
Start / End Page
Related Subject Headings
- 51 Physical sciences
- 49 Mathematical sciences
- 40 Engineering
Citation
Published In
DOI
EISSN
ISSN
Publication Date
Volume
Issue
Start / End Page
Related Subject Headings
- 51 Physical sciences
- 49 Mathematical sciences
- 40 Engineering