Temperature-Dependent Interactions Explain Normal and Inverted Solubility in a γD-Crystallin Mutant.
Protein crystal production is a major bottleneck in the structural characterization of proteins. To advance beyond large-scale screening, rational strategies for protein crystallization are crucial. Understanding how chemical anisotropy (or patchiness) of the protein surface, due to the variety of amino-acid side chains in contact with solvent, contributes to protein-protein contact formation in the crystal lattice is a major obstacle to predicting and optimizing crystallization. The relative scarcity of sophisticated theoretical models that include sufficient detail to link collective behavior, captured in protein phase diagrams, and molecular-level details, determined from high-resolution structural information, is a further barrier. Here, we present two crystal structures for the P23T + R36S mutant of γD-crystallin, each with opposite solubility behavior: one melts when heated, the other when cooled. When combined with the protein phase diagram and a tailored patchy particle model, we show that a single temperature-dependent interaction is sufficient to stabilize the inverted solubility crystal. This contact, at the P23T substitution site, relates to a genetic cataract and reveals at a molecular level the origin of the lowered and retrograde solubility of the protein. Our results show that the approach employed here may present a productive strategy for the rationalization of protein crystallization.
Duke Scholars
Altmetric Attention Stats
Dimensions Citation Stats
Published In
DOI
EISSN
ISSN
Publication Date
Volume
Issue
Start / End Page
Related Subject Headings
- gamma-Crystallins
- Temperature
- Solubility
- Mutant Proteins
- Models, Molecular
- Humans
- Biophysics
- 51 Physical sciences
- 34 Chemical sciences
- 31 Biological sciences
Citation
Published In
DOI
EISSN
ISSN
Publication Date
Volume
Issue
Start / End Page
Related Subject Headings
- gamma-Crystallins
- Temperature
- Solubility
- Mutant Proteins
- Models, Molecular
- Humans
- Biophysics
- 51 Physical sciences
- 34 Chemical sciences
- 31 Biological sciences