Development of Algorithms for Automated Detection of Cervical Pre-Cancers With a Low-Cost, Point-of-Care, Pocket Colposcope.
GOAL: In this paper, we propose methods for (1) automatic feature extraction and classification for acetic acid and Lugol's iodine cervigrams and (2) methods for combining features/diagnosis of different contrasts in cervigrams for improved performance. METHODS: We developed algorithms to pre-process pathology-labeled cervigrams and extract simple but powerful color and textural-based features. The features were used to train a support vector machine model to classify cervigrams based on corresponding pathology for visual inspection with acetic acid, visual inspection with Lugol's iodine, and a combination of the two contrasts. RESULTS: The proposed framework achieved a sensitivity, specificity, and accuracy of 81.3%, 78.6%, and 80.0%, respectively, when used to distinguish cervical intraepithelial neoplasia (CIN+) relative to normal and benign tissues. This is superior to the average values achieved by three expert physicians on the same data set for discriminating normal/benign cases from CIN+ (77% sensitivity, 51% specificity, and 63% accuracy). CONCLUSION: The results suggest that utilizing simple color- and textural-based features from visual inspection with acetic acid and visual inspection with Lugol's iodine images may provide unbiased automation of cervigrams. SIGNIFICANCE: This would enable automated, expert-level diagnosis of cervical pre-cancer at the point of care.
Duke Scholars
Altmetric Attention Stats
Dimensions Citation Stats
Published In
DOI
EISSN
Publication Date
Volume
Issue
Start / End Page
Location
Related Subject Headings
- Uterine Cervical Neoplasms
- Precancerous Conditions
- Point-of-Care Systems
- Machine Learning
- Image Interpretation, Computer-Assisted
- Humans
- Female
- Early Detection of Cancer
- Colposcopes
- Cervix Uteri
Citation
Published In
DOI
EISSN
Publication Date
Volume
Issue
Start / End Page
Location
Related Subject Headings
- Uterine Cervical Neoplasms
- Precancerous Conditions
- Point-of-Care Systems
- Machine Learning
- Image Interpretation, Computer-Assisted
- Humans
- Female
- Early Detection of Cancer
- Colposcopes
- Cervix Uteri