Skip to main content
Journal cover image

Plasmonic Nanoprobes for in Vivo Multimodal Sensing and Bioimaging of MicroRNA within Plants.

Publication ,  Journal Article
Crawford, BM; Strobbia, P; Wang, H-N; Zentella, R; Boyanov, MI; Pei, Z-M; Sun, T-P; Kemner, KM; Vo-Dinh, T
Published in: ACS applied materials & interfaces
February 2019

Monitoring gene expression within whole plants is critical for many applications ranging from plant biology to agricultural biotechnology and biofuel development; however, no method currently exists for in vivo monitoring of genomic targets in plant systems without requiring sample extraction. Herein, we report a unique multimodal method based on plasmonic nanoprobes capable of in vivo imaging and biosensing of microRNA biotargets within whole plant leaves by integrating three different and complementary techniques: surface-enhanced Raman scattering (SERS), X-ray fluorescence (XRF), and plasmonics-enhanced two-photon luminescence (TPL). The method developed uses plasmonic nanostars, which not only provide large Raman signal enhancement but also allow for localization and quantification by XRF and plasmonics-enhanced TPL, owing to gold content and high two-photon luminescence cross sections. Our method uses inverse molecular sentinel nanoprobes for SERS bioimaging of microRNA within Arabidopsis thaliana leaves to provide a dynamic SERS map of detected microRNA targets while also quantifying nanoprobe concentrations using XRF and TPL. The nanoprobes were observed to occupy the intercellular spaces upon infiltration into the leaf tissues. This report lays the foundation for the use of plasmonic nanoprobes for in vivo functional imaging of nucleic acid biotargets in whole plants, a tool that will revolutionize bioengineering research by allowing the study of these biotargets with previously unmet spatial and temporal resolution, 200 μm and 30 min, respectively.

Duke Scholars

Altmetric Attention Stats
Dimensions Citation Stats

Published In

ACS applied materials & interfaces

DOI

EISSN

1944-8252

ISSN

1944-8244

Publication Date

February 2019

Volume

11

Issue

8

Start / End Page

7743 / 7754

Related Subject Headings

  • Spectrum Analysis, Raman
  • Spectrometry, X-Ray Emission
  • Silver
  • Plant Leaves
  • Nanoscience & Nanotechnology
  • MicroRNAs
  • Metal Nanoparticles
  • Gold
  • Carbocyanines
  • Biosensing Techniques
 

Citation

APA
Chicago
ICMJE
MLA
NLM
Crawford, B. M., Strobbia, P., Wang, H.-N., Zentella, R., Boyanov, M. I., Pei, Z.-M., … Vo-Dinh, T. (2019). Plasmonic Nanoprobes for in Vivo Multimodal Sensing and Bioimaging of MicroRNA within Plants. ACS Applied Materials & Interfaces, 11(8), 7743–7754. https://doi.org/10.1021/acsami.8b19977
Crawford, Bridget M., Pietro Strobbia, Hsin-Neng Wang, Rodolfo Zentella, Maxim I. Boyanov, Zhen-Ming Pei, Tai-Ping Sun, Kenneth M. Kemner, and Tuan Vo-Dinh. “Plasmonic Nanoprobes for in Vivo Multimodal Sensing and Bioimaging of MicroRNA within Plants.ACS Applied Materials & Interfaces 11, no. 8 (February 2019): 7743–54. https://doi.org/10.1021/acsami.8b19977.
Crawford BM, Strobbia P, Wang H-N, Zentella R, Boyanov MI, Pei Z-M, et al. Plasmonic Nanoprobes for in Vivo Multimodal Sensing and Bioimaging of MicroRNA within Plants. ACS applied materials & interfaces. 2019 Feb;11(8):7743–54.
Crawford, Bridget M., et al. “Plasmonic Nanoprobes for in Vivo Multimodal Sensing and Bioimaging of MicroRNA within Plants.ACS Applied Materials & Interfaces, vol. 11, no. 8, Feb. 2019, pp. 7743–54. Epmc, doi:10.1021/acsami.8b19977.
Crawford BM, Strobbia P, Wang H-N, Zentella R, Boyanov MI, Pei Z-M, Sun T-P, Kemner KM, Vo-Dinh T. Plasmonic Nanoprobes for in Vivo Multimodal Sensing and Bioimaging of MicroRNA within Plants. ACS applied materials & interfaces. 2019 Feb;11(8):7743–7754.
Journal cover image

Published In

ACS applied materials & interfaces

DOI

EISSN

1944-8252

ISSN

1944-8244

Publication Date

February 2019

Volume

11

Issue

8

Start / End Page

7743 / 7754

Related Subject Headings

  • Spectrum Analysis, Raman
  • Spectrometry, X-Ray Emission
  • Silver
  • Plant Leaves
  • Nanoscience & Nanotechnology
  • MicroRNAs
  • Metal Nanoparticles
  • Gold
  • Carbocyanines
  • Biosensing Techniques