Skip to main content

Data from: Design of a novel low cost point of care tampon (POCkeT) colposcope for use in resource limited settings

Publication ,  Dataset
Ramanujam, N
May 15, 2015

Current guidelines by WHO for cervical cancer screening in low- and middle-income countries involves visual inspection with acetic acid (VIA) of the cervix, followed by treatment during the same visit or a subsequent visit with cryotherapy if a suspicious lesion is found. Implementation of these guidelines is hampered by a lack of: trained health workers, reliable technology, and access to screening facilities. A low cost ultra-portable Point of Care Tampon based digital colposcope (POCkeT Colposcope) for use at the community level setting, which has the unique form factor of a tampon, can be inserted into the vagina to capture images of the cervix, which are on par with that of a state of the art colposcope, at a fraction of the cost. A repository of images to be compiled that can be used to empower front line workers to become more effective through virtual dynamic training. By task shifting to the community setting, this technology could potentially provide significantly greater cervical screening access to where the most vulnerable women live. The POCkeT Colposcope’s concentric LED ring provides comparable white and green field illumination at a fraction of the electrical power required in commercial colposcopes. Evaluation with standard optical imaging targets to assess the POCkeT Colposcope against the state of the art digital colposcope and other VIAM technologies. Results: Our POCkeT Colposcope has comparable resolving power, color reproduction accuracy, minimal lens distortion, and illumination when compared to commercially available colposcopes. In vitro and pilot in vivo imaging results are promising with our POCkeT Colposcope capturing comparable quality images to commercial systems. Methods: Rapid 3D printing, consumer grade light sources, and cameras were used to construct the TVDC. The TVDC’s concentric LED ring provides comparable white and green field illumination at a fraction of the electrical power required in commercial colposcopes, and crossed polarizers provide a reduction in glare. Evaluation was performed using standard optical imaging targets to assess the TVDC against the state of the art digital colposcope and other VIA technologies. Results: Our TVDC has comparable resolving power, color reproduction accuracy, minimal lens distortion, and illumination when compared to commercially available colposcopes. In vitro and pilot in vivo imaging results are promising with our TVDC capturing images of comparable quality to commercial systems. Conclusion: The TVDC is capable of capturing images suitable for cervical lesion analysis. Our portable low cost system will be useful for increasing access to cervical cancer screening and diagnostics in resource-limited settings by providing a more readily portable and easy to use device for medical personnel. These data were originally made available at http://hdl.handle.net/10161/10056 and were migrated to the Duke Digital Repository on 12/08/2017.

Duke Scholars

Publication Date

May 15, 2015
 

Publication Date

May 15, 2015