Skip to main content
Journal cover image

A thermally polarized 129 Xe phantom for quality assurance in multi-center hyperpolarized gas MRI studies.

Publication ,  Journal Article
Bier, EA; Nouls, JC; Wang, Z; He, M; Schrank, G; Morales-Medina, N; Hashoian, R; Svetlik, H; Mugler, JP; Driehuys, B
Published in: Magn Reson Med
November 2019

PURPOSE: Hyperpolarized 129 Xe MR is increasingly being adopted worldwide, but no standards exist for assessing or comparing performance at different 129 Xe imaging centers. Therefore, we sought to develop a thermally polarized xenon phantom assembly, approximating the size of a human torso, along with an associated imaging protocol to enable rapid quality-assurance imaging. METHODS: MR-compatible pressure vessels, with an internal volume of 5.85 L, were constructed from pressure-rated, engineering grade PE4710 high-density polyethylene. They were filled with a mixture of 61% natural xenon and 39% oxygen to approximately 11.6 bar and placed in a loader shell filled with a 0.56% saline solution to mimic the human chest. Imaging employed a 2D spoiled gradient-echo sequence using non-slice-selective excitation (TR/TE = 750/6.13 ms, flip angle = 74°, FOV = 40 × 440 mm, matrix = 64 × 32, bandwidth = 30 Hz/pixel, averages = 4), resulting in a 1.6 min acquisition. System characterization and imaging were performed at 8 different MRI centers. RESULTS: At 3 Telsa, 129 Xe in the pressure vessels was characterized by T1 = 580.5 ± 8.3 ms, linewidth = 0.21 ppm, and chemical shift = +10.2 ppm. The phantom assembly was used to obtain transmit voltage calibrations and 2D and 3D images across multiple coil and scanner configurations at 8 sites. Across the 5 sites that employed a standard flexible chest coil, the SNR was 12.4 ± 1.8. CONCLUSION: The high-density polyethylene pressure vessels filled with thermally polarized xenon and associated loader shell combine to form a phantom assembly that enables spectroscopic and imaging acquisitions that can be used for testing, quality assurance, and performance tracking-capabilities essential for standardizing hyperpolarized 129 Xe MRI within and across institutions.

Duke Scholars

Altmetric Attention Stats
Dimensions Citation Stats

Published In

Magn Reson Med

DOI

EISSN

1522-2594

Publication Date

November 2019

Volume

82

Issue

5

Start / End Page

1961 / 1968

Location

United States

Related Subject Headings

  • Xenon Isotopes
  • Phantoms, Imaging
  • Nuclear Medicine & Medical Imaging
  • Magnetic Resonance Imaging
  • Humans
  • Equipment Design
  • 4003 Biomedical engineering
  • 0903 Biomedical Engineering
 

Citation

APA
Chicago
ICMJE
MLA
NLM
Bier, E. A., Nouls, J. C., Wang, Z., He, M., Schrank, G., Morales-Medina, N., … Driehuys, B. (2019). A thermally polarized 129 Xe phantom for quality assurance in multi-center hyperpolarized gas MRI studies. Magn Reson Med, 82(5), 1961–1968. https://doi.org/10.1002/mrm.27836
Bier, Elianna A., John C. Nouls, Ziyi Wang, Mu He, Geoff Schrank, Naomi Morales-Medina, Ralph Hashoian, Harvey Svetlik, John P. Mugler, and Bastiaan Driehuys. “A thermally polarized 129 Xe phantom for quality assurance in multi-center hyperpolarized gas MRI studies.Magn Reson Med 82, no. 5 (November 2019): 1961–68. https://doi.org/10.1002/mrm.27836.
Bier EA, Nouls JC, Wang Z, He M, Schrank G, Morales-Medina N, et al. A thermally polarized 129 Xe phantom for quality assurance in multi-center hyperpolarized gas MRI studies. Magn Reson Med. 2019 Nov;82(5):1961–8.
Bier, Elianna A., et al. “A thermally polarized 129 Xe phantom for quality assurance in multi-center hyperpolarized gas MRI studies.Magn Reson Med, vol. 82, no. 5, Nov. 2019, pp. 1961–68. Pubmed, doi:10.1002/mrm.27836.
Bier EA, Nouls JC, Wang Z, He M, Schrank G, Morales-Medina N, Hashoian R, Svetlik H, Mugler JP, Driehuys B. A thermally polarized 129 Xe phantom for quality assurance in multi-center hyperpolarized gas MRI studies. Magn Reson Med. 2019 Nov;82(5):1961–1968.
Journal cover image

Published In

Magn Reson Med

DOI

EISSN

1522-2594

Publication Date

November 2019

Volume

82

Issue

5

Start / End Page

1961 / 1968

Location

United States

Related Subject Headings

  • Xenon Isotopes
  • Phantoms, Imaging
  • Nuclear Medicine & Medical Imaging
  • Magnetic Resonance Imaging
  • Humans
  • Equipment Design
  • 4003 Biomedical engineering
  • 0903 Biomedical Engineering