Immersed Boundary Method Halo Exchange in a Hemodynamics Application
In recent years, highly parallelized simulations of blood flow resolving individual blood cells have been demonstrated. Simulating such dense suspensions of deformable particles in flow often involves a partitioned fluid-structure interaction (FSI) algorithm, with separate solvers for Eulerian fluid and Lagrangian cell grids, plus a solver - e.g., immersed boundary method - for their interaction. Managing data motion in parallel FSI implementations is increasingly important, particularly for inhomogeneous systems like vascular geometries. In this study, we evaluate the influence of Eulerian and Lagrangian halo exchanges on efficiency and scalability of a partitioned FSI algorithm for blood flow. We describe an MPI+OpenMP implementation of the immersed boundary method coupled with lattice Boltzmann and finite element methods. We consider how communication and recomputation costs influence the optimization of halo exchanges with respect to three factors: immersed boundary interaction distance, cell suspension density, and relative fluid/cell solver costs.
Duke Scholars
Published In
DOI
EISSN
ISSN
Publication Date
Volume
Start / End Page
Related Subject Headings
- Artificial Intelligence & Image Processing
- 46 Information and computing sciences
Citation
Published In
DOI
EISSN
ISSN
Publication Date
Volume
Start / End Page
Related Subject Headings
- Artificial Intelligence & Image Processing
- 46 Information and computing sciences