3D Printing of Poly(propylene fumarate) Oligomers: Evaluation of Resin Viscosity, Printing Characteristics and Mechanical Properties.
Complex three-dimensional (3D) pore geometries, useful for tissue engineering scaffolds, can be fabricated via photo-crosslinking of resorbable poly(propylene fumarate) (PPF) resins using stereolithography (SLA) and/or continuous digital light processing (cDLP) methods. Physico-chemical parameters inherent to 3D printable resin design, include viscosity, polymer concentration, degree of polymerization, and resin printing temperature. We report here on our study of these parameters and their influence the cDLP 3D printing process and the resulting mechanical properties. A series of PPF oligomers were synthesized by the ring-opening copolymerization (ROCOP) of maleic anhydride and propylene oxide followed by a base-catalyzed isomerization. The resin viscosities were measured as a function of number-average molecular mass ([Formula: see text]) of the PPF oligomers (1.1, 1.7 and 2.0 kDa), concentrations of PPF in the reactive diluent diethyl fumarate (DEF) (50 and 75 wt %) and resin temperature (25 to 55 °C). The zero-shear viscosity (η0) of the resins was found to be temperature-dependent and follow a linear Arrhenius relationship. Tensile tests demonstrated mechanical properties within the range of trabecular bone, with the ultimate strength at break above 15 MPa and elastic moduli between 178 and 199 MPa.
Duke Scholars
Altmetric Attention Stats
Dimensions Citation Stats
Published In
DOI
EISSN
ISSN
Publication Date
Volume
Issue
Start / End Page
Related Subject Headings
- Viscosity
- Printing, Three-Dimensional
- Polypropylenes
- Polymers
- Polymerization
- Maleic Anhydrides
- Fumarates
- Biocompatible Materials
- 40 Engineering
- 34 Chemical sciences
Citation
Published In
DOI
EISSN
ISSN
Publication Date
Volume
Issue
Start / End Page
Related Subject Headings
- Viscosity
- Printing, Three-Dimensional
- Polypropylenes
- Polymers
- Polymerization
- Maleic Anhydrides
- Fumarates
- Biocompatible Materials
- 40 Engineering
- 34 Chemical sciences