Skip to main content
Journal cover image

X-ray imaging optimization of 3D tissue engineering scaffolds via combinatorial fabrication methods.

Publication ,  Journal Article
Yang, Y; Dorsey, SM; Becker, ML; Lin-Gibson, S; Schumacher, GE; Flaim, GM; Kohn, J; Simon, CG
Published in: Biomaterials
April 2008

We have developed a combinatorial method for determining optimum tissue scaffold composition for several X-ray imaging techniques. X-ray radiography and X-ray microcomputed tomography enable non-invasive imaging of implants in vivo and in vitro. However, highly porous polymeric scaffolds do not always possess sufficient X-ray contrast and are therefore difficult to image with X-ray-based techniques. Incorporation of high radiocontrast atoms, such as iodine, into the polymer structure improves X-ray radiopacity but also affects physicochemical properties and material performance. Thus, we have developed a combinatorial library approach to efficiently determine the minimum amount of contrast agent necessary for X-ray-based imaging. The combinatorial approach is demonstrated in a polymer blend scaffold system where X-ray imaging of poly(desaminotyrosyl-tyrosine ethyl ester carbonate) (pDTEc) scaffolds is improved through a controlled composition variation with an iodinated-pDTEc analog (pI(2)DTEc). The results show that pDTEc scaffolds must include at least 9%, 16%, 38% or 46% pI(2)DTEc (by mass) to enable effective imaging by microradiography, dental radiography, dental radiography through 0.75cm of muscle tissue or microcomputed tomography, respectively. Only two scaffold libraries were required to determine these minimum pI(2)DTEc percentages required for X-ray imaging, which demonstrates the efficiency of this new combinatorial approach for optimizing scaffold formulations.

Duke Scholars

Altmetric Attention Stats
Dimensions Citation Stats

Published In

Biomaterials

DOI

EISSN

1878-5905

ISSN

0142-9612

Publication Date

April 2008

Volume

29

Issue

12

Start / End Page

1901 / 1911

Related Subject Headings

  • Tissue Engineering
  • Materials Testing
  • Combinatorial Chemistry Techniques
  • Cell Culture Techniques
  • Biomedical Engineering
  • Biocompatible Materials
  • Absorptiometry, Photon
 

Citation

APA
Chicago
ICMJE
MLA
NLM
Yang, Y., Dorsey, S. M., Becker, M. L., Lin-Gibson, S., Schumacher, G. E., Flaim, G. M., … Simon, C. G. (2008). X-ray imaging optimization of 3D tissue engineering scaffolds via combinatorial fabrication methods. Biomaterials, 29(12), 1901–1911. https://doi.org/10.1016/j.biomaterials.2007.12.042
Yang, Yanyin, Shauna M. Dorsey, Matthew L. Becker, Sheng Lin-Gibson, Gary E. Schumacher, Glenn M. Flaim, Joachim Kohn, and Carl G. Simon. “X-ray imaging optimization of 3D tissue engineering scaffolds via combinatorial fabrication methods.Biomaterials 29, no. 12 (April 2008): 1901–11. https://doi.org/10.1016/j.biomaterials.2007.12.042.
Yang Y, Dorsey SM, Becker ML, Lin-Gibson S, Schumacher GE, Flaim GM, et al. X-ray imaging optimization of 3D tissue engineering scaffolds via combinatorial fabrication methods. Biomaterials. 2008 Apr;29(12):1901–11.
Yang, Yanyin, et al. “X-ray imaging optimization of 3D tissue engineering scaffolds via combinatorial fabrication methods.Biomaterials, vol. 29, no. 12, Apr. 2008, pp. 1901–11. Epmc, doi:10.1016/j.biomaterials.2007.12.042.
Yang Y, Dorsey SM, Becker ML, Lin-Gibson S, Schumacher GE, Flaim GM, Kohn J, Simon CG. X-ray imaging optimization of 3D tissue engineering scaffolds via combinatorial fabrication methods. Biomaterials. 2008 Apr;29(12):1901–1911.
Journal cover image

Published In

Biomaterials

DOI

EISSN

1878-5905

ISSN

0142-9612

Publication Date

April 2008

Volume

29

Issue

12

Start / End Page

1901 / 1911

Related Subject Headings

  • Tissue Engineering
  • Materials Testing
  • Combinatorial Chemistry Techniques
  • Cell Culture Techniques
  • Biomedical Engineering
  • Biocompatible Materials
  • Absorptiometry, Photon